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Three-wave interaction solitons in optical parametric amplification
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This paper applies three-wave interacti@w!)-soliton theory to optical parametric amplification when the
signal, idler, and pump wave can all contain TWI solitons. We use an analogy between two different velocity
regimes to compare the theory with output from an experimental synchronously pumped optical parametric
amplifier. The theory explains the observed inability to compress the intermediate group-velocity wave and
20-fold pulse compression in this experiment. The theory and supporting humerics show that one can effec-
tively control the shape and energy of the optical pulses by shifting the TWI solitons in the pulses.
[S1063-651%99)16505-X

PACS numbes): 42.65.Tg, 42.65.Yj, 42.65.Re, 42.65.Ky

[. INTRODUCTION other more familiar solitons. TWI solitons, although they
exist in quadraticy® media, differ greatly from the well-
To adequately describe three-wave interacti6Rg/I's) ~ known solitary waves generated by cascadjpg’ x x(?
involving ultrashort laser pulses€ 10 ps), it is necessary to Processe$l14,15. Unlike the cascaded waves, TWI solitons
account for dispersive effects. Normally, such effects limitar® not a composition of two waves with different frequen-
conversion efficiency and elongate pulses in second ha cies and oscillatory profiles moving together. In contrast,

. : . WI solitons are single frequency pulses with smooth, for a
monic generan_r(SHG), sum frequency ge_neratldrSFG),_ single TWI-soliton sech, profiles. Moreover, TWI solitons do
optical parametric generatid®PQ, and optical parametric

lificati H | X 8t not require high second-order group-velocity dispersion
amplification processes. However, as early as in 1ag (GVD) and are supported entirely by the first-order group-
was shown that in optical parametric amplification due to th

. . Q/elocity mismatch effect. This feature makes TWI solitons
group-velocity mismatch, the fundamental wave can be subsgpecially attractive for applications in all optical switching

stantially compressed in a degenerate interactiinen the  [1g],

group velocities of the two fundamentals are egjuilore The underlying scattering problerfdeveloped in Refs.
recently it was predicted theoreticallg,3] and observed ex- [12,13, and summarized in Reff17]) for the TWI system is
perimentally[4,5] that group-velocity mismatcfGVM) can  the unwieldy third order Zahkarov-Manak¢¥M) system of
compress ultrashort laser pulses in SHG and SFG processeiifferential equations. Fortunately, when the pulses do not
In recent experiments pulse compression ascribed to GVMverlap the ZM system factors into three simpler Zahkarov-
was also observed in OPG and OPA experimgbis]. That  Shabat(ZS) scattering problems: the ZS scattering problem
this compression was soliton in nature, as originally pro-underlies the nonlinear Schtimger equatio(NLS) soliton
posed in Ref[3], had until very recently not been given theory, and has been intensively studied because of impor-
adequate consideration. tant applications in optical data transmission.

In Refs.[10,11] the soliton nature of pulse compression in ~ The IST theory shows a connection between the scattering
the presence of the GVM was explained using analyticaProblem for the NLS system and the asymptotic scattering
soliton solutiong 12,13 derived from the inverse scattering Problems for the TWI system. A connection between the
transform(IST): extensions of these soliton solutions to non- 1 W! system and NLS equation is not surprising. As early as
zero phase mismatch were contained[11], where these 1976 the authors of18] noted solitonlike propagation of

solitons were termed TWiI-solitons to distinguish them from©Ptical pulses in quadratic media. These phenomena are the
subject of recent intense theoretical and experimgtglL5]
investigation. The connection between the ZM scattering
: - roblem and three ZS scattering problerftne for the
*Electronic address: ibragimo@engr.umbc.edu Present addre symptotic profile of each frequencghows that we should

Electrical Engineering, University of Maryland, Baltimore County, expect profiles similar to those seen in the NLS as output

B?Itimore, MD 21250. from the three-wave interaction. However, one must remem-
_JFE'ec”O”!C address: struther@mtu.edu ber that, although the inverse scattering problems are the
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TWI, the temporal propagation equations are, of courseity and diffraction for spatial solitons Such waves were

completely different.

initially called solitary waves, and the term soliton reserved

In this paper we present results obtained using IST toolsfor solitary waves with a remarkable interaction property
describing pulse compression effects in optical parametrig20]: A soliton is a solitary wave which asymptotically pre-
amplification: it appears that IST theory provides an explaserves its shape and velocity upon nonlinear interaction with
nation of a substantial body of experimental data accumuether solitary waves, or more generally, with another (arbi-
lated over the last few years in optical parametric generatiotrary) localized disturbance
and optical harmonic generation by ultrashort laser pulses. The IST analysis in Ref§12,13 shows that in the FSF
Specifically, we explain the experimentally measured 20-folccase ¢,>v3;>v,) both fundamental frequency waves have
compression[6,7] of the idler wave in a synchronously solitons with sech profiles and specific height to width ratios
pumped optical parametric generator, and note the successfwith this interaction property. These waves with the sech
explanation{19] of the compression reported in these works.profiles are the fundamental solitons in the TWI theory. In

II. BASIC PROPERTIES OF TWI SOLITONS

A numerical study in Refl11] shows that group velocity
dispersion is negligible in most practical cases and we ne-

Ref.[11], the soliton profiles for the TWI systeld) are

: @

J

A(t,2)=A +Aj'°(t Gy
i(t,z)=A gsech——|t— —
j 0 y v,

glect GVD effects. In this regime the three-wave interactionyherez is the propagation coordinatejs time, ands is an

is described by the following system of three equations:

oA, 1 aAl_AA

9z vq gt

oA, 1 aAz_AA L
9z vy, ot L @
&A3+ 1 0A; AA

9z v ot Y%

where normalized amplitudes: A,

A, are
=(Ej/Eg)Vnjws/nzwj, w; are frequenciesy; are group
velocities, andn; are the refractive indexeg, here is de-

termined by the relationshifEy= \Vnino\ Ao/ (27)%xn1 s
wherey,, is the nonlinear dielectric susceptibility.

arbitrary time shift;j =1 gives the first fundamental wave,
andj=2 the secondf; o andA, o are the initial amplitudes

of the first and second fundamental pulses, respectively, and
the coefficientsy; which prescribe the amplitude/duration
relationships are

Y1=VV12V13  Y2=NV12V23
(©)
1 1

Y3=\VV13V2,3 with Vi N =

Ui Uj

In Ref.[11] these waves were termed TWI solitons to avoid
confusion with and distinguish them from “normal” NLS
solitons.

For the TWI system, each TWI soliton corresponds to a
zero in either of the two outer diagonal elements of>a3

Throughout this paper we assume perfect phase matchingcattering matrix. Since the diagonal elements of the scatter-
i.e.,Ak=0. This assumption is not necessary for the analysi$ng matrix are the same before and after the interadtitime
in the paper, and is adopted for simplicity and clarity: we canTWI solitons(2) possess the interaction property common to

use the phase transformation[itil] to connect syster(i) to
the analogous system withk # 0.

all solitons: they recover their shape after interacting with
another(arbitrarily shapepifundamental frequency wave. In

We assume that the group velocity of the high frequencyfact, for a fundamental TWI soliton the only effect of an
wave,v s, lies between the group velocities of the other twointeraction is a delay and possibly a phase change. Some

waves, i.e.,v1>v3>v,. In Ref. [16] this is the FSF

(fundamental-sum frequency—fundamentaase. In Ref.

examples of this behavior were given in REE6].
The ZM scattering problem which underlies the IST for

[17] this is the “soliton-decay” case. In the FSF regime boththe TWI equation$12-17 is unwieldy and specialized. The
fundamental frequencies can contain TWI solitons. In conZM scattering problem is an eigenvalue problem for a linear
trast, if the group velocity ; of the pump does not lie be- system of three ordinary differential equations, and has not

tween the fundamental group velocitieg andv ,—we term

been extensively studied. Fortunately, the scattering problem

this the SFF(sum frequency—fundamental—fundamental for the TWI system(1) simplifies greatly if the three inter-
regime—only the fundamental frequency with the extremeacting waves are initially well separated. In this case, the ZM
velocity can have TWI solitons. As shown below, this dis- scattering problem factors into thréene for each frequengy
tinction between the two regimes plays an important rolesimpler ZS scattering problems. The ZS problem is an eigen-
when comparing the TWI soliton theory and experimentalvalue problem(described in the Appendixgdor a linear
data. Throughout this paper we use FSF soliton theory: isystem of two ordinary differential equations and is the basis
Sec. IV we show how this theory can be applied to an exfor the IST solution of many nonlinear differential equations.

perimental SFF interaction.

In particular, the ZS scattering problem underlies the soliton

The termsoliton requires some explanation when appliedtheory for the nonlinear Schdinger equation. As a result of
to the three-wave interaction. The original definition of soli- the intense interest in NLS soliton data transmission, the ZS
ton has gradually altered in optics, and at the present momestattering problem has been extensively studied.
most researchers define a soliton as a wave which propagatesIn our treatment of parametric amplification we will as-
preserving its shape because of a balance between nonlineaume that the signal wave is predelayed, and that the signal

ity and dispersion for temporal solitorisetween nonlinear-

enters the crystal sufficiently far behind the pump that we
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can use the simpler ZS analysis. Output from numerical D; exfl — (m+ 7))t]
simulations quantifying the effect of varying the predelay kij= .
(and hence overlgpof the signal relative to the pump are

contained in the Appendixes. The conclusion to be drawrrhe terminology spectrum and phases are deliberately cho-

from these numerics is that the signal output from the decayen to highlight the analogy between the IST and the linear

of an intense pump is essentially independent of the extent gfqyrier transform described below. Expressi¢Bisand (6)

the predelay of the small trigger pulse. ~_ show that the multisoliton profiles have a scaling behavior
This approach redu_ces the nonhngar mteraqtlon within th&imilar to single solitong2): if Q(t) is ann-soliton profile

medium to an algebraic transformation of the input ZS scatyih,  soliton amplitudes 74,7,,...,n, and phases

tering data(one for each frequengyto output ZS scattering D,,D,,....D, then the scaled pulsgQ(t/S) is ann-soliton

data(again one for each frequencyfo complete the analy- pulse with soliton amplitudeg »y, 875, ...,87, and nonlin-

sis we need to know how to compute the ZS scattering datg,, phase@D,,3D.,...,8D,,.

of arbitrarily shaped input pulses and how to recreate the gjnce the 7S scattering problem describes the solitons in

output pulses from their ZS scattering data: this material is iny| three envelopes, the nonlinear superposition formula is

the Appendixes. similar for all three waves. Substituting the soliton spectrum
The IST analy5|$_l_7,20—23 of Eq. (1) shows that under T 175 2,--27; n @nd nonlinear phases; 1D 5,...,D; ,, for

rather general conditionsuch as the amplitude never cross- the ith'pulse into Eq(5) to obtainQi(t)' and scalingj gives

ing zero, etc[17]) any smooth intense pulse at the frequencyy, amplitude for theth pulse:

w;, well separated from the other two pulses, is almost en- '

6
et 7 ©

tirely composed of TWI solitons. In fact, the normalized area Ai()=7,Qi(t). 7
of the pulse determines the number of solitons in the enve-
lope Each wave will, in general, have a different number of soli-

tons with different soliton amplitudes and nonlinear phases.
1 (= . The signal (=1) pulse isy;Q(t), whereQ(t) is determined
,Ti:__f Ai(t)dt=mn;+¢ with |6i|<§ (4) by Eq.(5) using the soliton amplitudes and nonlinear phases
Vit of the signal pulse. The number, amplitudes, and nonlinear
phases of the solitons in the idler<2) pulse will not, in
whereA;(t) is the amplitude of theth wave, the coefficients general, be the same as those in the signal pulse: the shape of
v are given by Eq(3), n; is the number of TWI solitons the idler (=2) pulse isy,Q,(t), whereQ,(t) is determined
contained in theth wave, andg; is the nonsoliton or radia- by Eq. (5) using the solitons in thaller pulse.
tion portion of theith wave. Equatiori4) implies that pulses The nonlinear phasd3,,D,,...,D,, appearing in expres-
with 77> /2 must contain TWI solitons, and that intense sions(5) and (6) for Q(t) have a simple physical meaning:
pulses (> ) are almost entirely composed of TWI soli- they determine the positions of the TWI solitons in the
tons. pulse. In the simple case with only a single soliton in itte
Each TWI soliton is described by two numberg(which  pulse with amplitudey; ; and nonlinear phase; ;, Egs.(5)
we term the soliton amplitudeand D (which we term the and(6) give
nonlinear phase All three waves may have multiple TWI

solitons: when necessary we use two subscripisandD; ; A 1(t)=sgn(D; 1) vi2n,j sech2x; 1(t— 7 1) ]

on soliton parameters. The first index indicates the wave to

which the soliton belongsi=1 is the signal,i=2 is the _ In(|D; 4|/27; 1)

idler, andi=3 is the high-frequency pump. The second in- with AT T ®)

dex identifies the soliton within the wave. For exampjg,
is the amplitude of the fourth soliton in the idler envelope.and the quantityr; , gives the location of the peak of the
Where it will not cause confusiofand the argument applies single soliton. For a single TWI soliton the soliton coordi-
to all the envelopes we drop the subscript identifying the nateris a natural parameter since it gives the location of the
wave to which the soliton belongs. peak. However; does not determine the sign of the pulse
The three-wave interaction is nonlinear, and a pulse comand the nonlinear phade which provides a complete de-
posed ofn TWI solitons is not obtained by merely summing scription is the natural quantity to compute in the scattering
the single soliton$Eq. (2)]. When the pulses are separatedproblem.[Note that the peak amplitude of a single TWI soli-
the pulse profile is reconstructed using the ZSoliton for-  ton (8) in theith envelope is 3,7, wherey is the “ampli-
mula[17] tude” of the TWI soliton]

We write
n

Q=2 Djex—(m+notl1+N)j,  (5) __In(IBy127) ©
Pt “ 27 '

wheren is the number of solitons in the pulse; the soliton For a single soliton, or when solitons are far apart from each

amplitudes areyy, 7,,...,m,, Which we will collectively re-  other, 7, approximates the position of the center of the cor-

fer to as the nonlinear spectrum; the nonlinear phases amesponding soliton. However, this simple interpretation of

D,,D,,...,.D,; | is the identity matrix; the negative power the phases is only valid when the solitons are well separated.

denotes the matrix inverse; and the matxixs The solitons interact strongly when they are nearby, and it
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does not make sense to assign positions to individual solitons 5
within a group. However, the notion of the soliton coordi- 4 a
natesr,,,...,7, defined by Eq(9) is very useful. In fact,
shifting all the soliton positions by the same amowgshifts

the entire pulse byry: in terms of the nonlinear phases 42
D,,D,,...,D, this means that Eq9), multiplying each of | F
the soliton phaseB, in a pulse by exj{2# ], producesan | ___. /\
identical pulse time shifted by,. 0

The superposition afi solitons(or annth-order soliton is 1
symmetric[24] if -10 -5

n Kt 7, FIG. 1. Possible compression for a five-TWI-soliton sech pro-
Dy= lL277k11 =7 (10 file: curvea is the amplitudeA of an alternating phase symmetric
};k ! five-soliton profile;b is the amplitudeA of a sech profile with the

o N - _ same soliton content ag and c is the amplitudeA of the largest
Multisoliton superpositions can exhibit a wide range of com-soliton inb.

plicated wave forms. The most important in practical appli-

cations are bell-shaped sech pulses. The combinf2@of  gyration isi times that of curveb, and it contains exactly

n solitons with amplitude ratio4:3:5:...21+1, i.e., 36% of the energy of curvi. Physically, within a long sech
pulse there is always a soliton that has almost twice the am-
plitude of (and is substantially shortethan the long sech
pulse. In this example, if the largest soliton in the long sech
pulse can be separated from the other solitons, then we
and the phases given by Eq0), with all positive signs, has achieve a compression ratio of 9 and a clean intensity distri-

_2(n—j)+1

nj_Wnl for lsj$n, (ll)

a sech shape with amplitude bution, and retain 36% of the energy in the compressed
pulse.
[ 2n (12) The synchronously pumped optical parametric oscillator
TR T T My Ty experimentg6,7] report a compression ratio of 20. Repeat-

ing the computation above shows that for a compression ra-
Selecting the largest soliton to have amplitudg=(n  tio of 20 the central soliton contains 20% of the initial en-
—1/2) andn,=1-1/(2n) gives the useful amplitude distri- ergy. We believe that this is the type of compression

butions observed in Refd.6,7].
Q(y=nsecl(t=n)], lIl. SOLITON SOLUTIONS:
B i (13 SOLITONS IN THE THIRD ENVELOPE
Q(t)=secil/in(t—7)]. AND NONLINEAR FOURIER TRANSFORM
Forn=1, Eq.(13) is a fundamental solitoffirst-order soli- In many ways, solving a nonlinear equation using an IST

ton) with the soliton amplituden;=3%. For integersn>1, is analogous to solving the wave equation using the Fourier
Eqg. (13) describes the decomposition of sech pulgithern  transform[20-23. To solve a linear differential equation
times longer om times more intense than the fundamentalusing the Fourier transform, one first decomposes an arbi-
soliton) into their constituent solitons. I is not an integer, trary initial wave into a superposition of simple plane waves.
then profiles of form(13) are not puren-soliton profiles but  These plane waves do not change during the propagation,
contain eithem or m+1 (wherem is the largest integer less and so the spectrum is constant: only the phases of the plane
thann) TWI solitons and some radiation. waves change during the propagation. To complete the solu-
Merely changing the signs of the soliton phasing in thetion to the propagation problem, one computes the new
input pulse gives a 25-fold intensity compression for a fifth-phases from a simple evolution equation, and assembles the
order soliton sech pulse. The intensity compresséidnained  solution from the plane waves with their new phases.
by changing all positive phases to alternating phafeshe Analogous to the linear Fourier transform, in the nonlin-
nth-order soliton sech pulse i¥. However, the secondary ear case each of the three nonoverlapping input pulses
extrema in the compressed pulses can contain a significabd; o(t), wherei=1, 2, and 3, respectively, are the initial
portion of the pulse energy: in Fig. 1 the central peak ofsignal, the idler, and the high-frequency pungan be rep-
curve a contains~80% of the total pulse energy, while the resented as aonlinearsuperposition ofi; solitons with dif-
secondary and tertiary peaks beal3% and 6%, respec- ferent amplitudesy; , for 1<k=n; (which, to emphasize the
tively, of the energy of the central peak. The duration of theanalogy with the linear Fourier transform, we refer to as the
central peak of curva in Fig. 1 is ~5th that of the sech “soliton spectrum’) with associated nonlinear phasBs
pulse(curveb). and some residual radiation. As in the linear case, the soli-
Another approach to soliton compression in the TWI istons(in the linear case spectryndo not change during the
suggested by curvein Fig. 1. This curve is the profile of the interaction; however, their phases do. To find the shapes of
largest soliton contained in the fifth-order soliton pulsethe waves after the nonlinear interaction, one needs to con-
(curve b): the amplitude is 1.8 times that of cunl® the  struct the final envelopes, using the same solitons, but with
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the new phases which the solitons have acquired during the ,
nonlinear interaction. . .

Suppose that initially there is only an intense pump and a i
small signal wave with the highest speed, i.e., the idler an
wave with speed, is absent before the interaction. This is
similar to parametric amplification when at the start of the i
interaction a small trigger pulsgignal wave at frequency 0 TN
w1 1S behind an intense pump pulse at frequergy= w, H

-

4
\
AY
N
1
K
’
i
3
L3
A Y
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1)
s
’
r
A
.>l-
e

'

. . . . -2 ) i
+w,, and c_iurlng the_z interaction the signal oyertakes_ the  Idler 2 - ..Signal 2 :
pump. Any time the high-frequency pump contains a soliton, ldler 1 ciomal 1 :
it is unstable. When each pump soliton decays, it emits ex- ~ - —e .‘:
actly one soliton into each daughter wave. Thus each soliton ™ o - o5 55 '30

in the pump can be thought of as a bound state of zero ¢ (ps)
binding energy, consisting of a signal and an idler soliton

with pe_zrfectly matched energies: the matching i.S exaCtI_y that FIG. 2. Signal and idler amplitude#\( andA,) output from the

pre,scr'bed by the Manley'ROW? relations. The interaction otiecay of a four-TWI-solitofi4 sech()] pulse: signal and idler 1 are

an intense pump with a small trigger pulse breaks the perfeghe output with trigger 0.0025 expt?); signal and idler 2multi-

energy balance and initiates the decoupling into idler angyjied by —1 to make the figure cleareare the output with trigger

signal waveq12,13. During the interaction, all solitons in ¢ 05 exp(-t?).

the pump split and move to the idler and signal waves

[12,13: the number of solitons in each fundamental equalsyave. Here we complete the investigation by including the

the number of solitons initially in the pump. However, the expressions for the idler. The derivation of the analytical

phases of each soliton will be changed by the interaction. Wexpressions is in the Appendixes.

obtain analytical expressions for the final phases using an The following expressions for the final phases of the first

approach developed in Refl7]. o (signa) and secondidler) solitons in terms of the initial
When a solitonzsy in the third envelope splits, it pro- parameters explain the behavior in Fig. 2:

duces two low-frequency solitons: one with amplitugg in

. . ) ; N
the first envelope and one with amplitugg, in the second . Maxt 73, 271k
envelope with DY\ =p1(m3) 21 mai] | ex z|{,
' ' ’ jz& N3k™ 73 U1
I
M= 1Mz and  mo= s 3k, (14 (16)
where the scalings;; and «;, are ) 0 272k
Dok =p1(m3x) a2D3) €X Uz, Z|, 17
V32 V31
a=—- and a,=—F. (15 0 o . ) )
V21 V21 whereDj3j are initial phases in the pump,;/ andD;’ are

. ) final soliton phases in the signal and the idler waves, and
If the n pump solitons areps for 1<k<n, then the signal ..\ ., 5. are the initial pump solitons; the parameters
and idler solitons arey, = a; 73 and 77, = @273k, r€SPEC- 4 "anda, are defined in Eq(15), andp, is the ZS reflection
tively, for 1<k=n. The nonlinear phases of the output soli- cpefficient of the firstsigna) wave. As shown in the Appen-

tons can be computed from an algebraic expressions for thgyes, if the initial signal pulsé\, ((t) is small, then
output scattering matrix. Once the nonlinear phases are ’

known the dominant soliton portion of the output is readily 1 (=
computed from the nonlinear superpositipiegs. (5) and pa( n):y—f Ay o(t)expl—2a; gt)dt. (18
(6)]. tome

As Eq.(4) shows, an intense pulse wiff> 7/2 is essen- , N
a.(4) P = When using Eq(16), one should bear in mind that due to the

tially composed of TWI solitons since,<7;. We neglect hi ) btai he A di h
the radiation(nonsolitor) part of the pump, and assume that way t |s($)xpre_35|on W"’_‘S obtainéste the ! ppendixgsthe
ik define the final shape of the time reversal of the

the pump consists entirely of TWI solitons. Figure 2 showsPhaseD .

representative output from the decay of a 4 sgcpgmp  Signal pulse. o _
with a small trigger pulse: for case 1 the trigger is EXPressiong16) and(17) show a dramatic difference in

0.05exp(t?), while for case 2 the trigger is 0.0025 the behavior of the signal and idler waves. The final signal
exp(—t?). The features to note are that the four solitpEg. phaseD{") depend only on the initial soliton content of the
(13)] contained in the 4 sed)(pulse have split according to PumMp, anddo notdepend on the initial nonlinear phases of
Eq. (14), and are clearly visible in both the signal and idler theé pump solitons. This is very surprising: in general one
output; the phases in the signal output alternate; the phases{¥puld expect the output shape of the signal wave to involve
the idler output do not alternate; the most intense soliton is ifpoth soliton amplitudesysy and nonlinear phased). A

the lead in both pulses; and smaller trigger pulses increadiear analogy to this would be if the propagation of a beam
the separation of the output solitons. The IST theory gives &lid not depend on the initial shape of its wave front. For the
very clear explanation of this behavior. In RE25] we gave  nonlinear case, the fact that E(L6) does not involve the
an analytical formula describing the behavior of the signalinitial nonlinear phase@%'}( but only the soliton amplitudes
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13k Means that the output shape of the signal wave practi- 6 v
cally does not depend on the initial shape of the pump. !
In contrast, the initial phaseBg")k do appear in expression
(17) for the final D(ka) idler soliton phases, and the idler
output depends on the initial profiles of the intense pump
(through the initial soliton phasgas well as the reflection
coefficientp(#3y) (or radiation spectrum at the poinigy)
of the small trigger.

The final shape of the signal depends critically on the
product

-2 0 2

n : t (ps
w =[] 2T 19 "
=1 M3k™ 73 FIG. 3. Initial amplitudes for numerical verification. The pulse

2k (t) is the fundamental trigger pulse whitd —p4 are pump profiles.

which determines the signs of the solitons in Etp). There  All four pump pulses have the same soliton amplitudgg=(2.7
is no loss of generality in assuming the solitons are orderedknd 7,=1); they differ in their soliton phases.
I.e., 73x= M3k+1, Which ensured >0, ¥,<0, ¥3;>0, etc. . ) . .
It is these aiternating signs that give the output signal puls€h® other TWI solitons in the pulse: for the signal wave this
the characteristic profile of a decaying parade of oscillatinger™ is independent of the coordinate§ of the input pump
humps, which can be seen in Fig. 2. In contrast, the Outpu@ulse. For the idler this term is a scaled copy of the coordi-
idler soliton phase§Eq. (16)] are determined by the initial nates 7$). For small trigger pulses, the terms involving
pump soliton phaseBs, . If the soliton phases in the pump p(73)) are dominant in Eqs(20) and (21) and the third
are initially positive (which is the case for the sech pump terms are negligible. This shows that for small triggers the
pulse in Fig. 2, then the output idler phase will also be time shift increases as the soliton amplitude decreases which
positive (as is shown in Fig. 2 explains the ordering of the solitons in Fig. 2.

The exponential factors in Eq$16) and (17) have no Numerics on syster(tl), illustrating the analytical predic-
influence on the output pulse shapes. As discussed abovégns, are contained in Figs. 3 and 4. Figure 3 shows a single
these exponential factors correspond to uniform translationiigger pulse with four different pump pulses: all four pump
of the output pulses. In fact, they show that the solitons inpulses are pure two-soliton profiles withy=2.7 and »,
Egs.(16) and (17) move with velocitiesv; andv,, respec- =1, but with different soliton phases. Equatiofis) and
tively. Calculating the soliton coordinat¢8)—dividing Eq.  (17) predict that the signal output of this trigger pulse with
(16) by twice the soliton amplitude, taking logarithms, and these three different pump profiles should be identical. Fig-
dividing again—gives the soliton “coordinates” of the out- ure 4 shows the numerical signal and idler output: the signal

put signal and idler solitonsr{) and 7%}, respectively output is the same for the four different pumps, while the
' ' idler essentially repeats the pump profile. In practice, of
iy 2 Inpi(mz)  In(¥y) course, pulses will never have exact soliton profiles, and

k=t T, T (200 there will always be small amounts of radiation. Additional

' ’ numerics illustrating the stability of the soliton behavior are

0) in Ref. [25].
Tgk>=vi+'”’;lﬂ+ﬂ. (22)
2 M2k ar

The first terms in Eq920) and(21) arise from the exponen-
tial factors in Eqs(16) and(17), and show that all the output
TWI solitons move with the same speegl, (for the signal,
andv, for the idle). The second term shows how the trigger
pulse profileA, , effects each soliton in the pump through
the reflection coefficienp,. When the reflection coefficient 0
is small, the solitons in the signal wave experience large time
delays and the solitons in the idler are advanced. Small soli- -2 \
tons, corresponding to smaly,, experience larger time |
shifts and will be delayed or advanced more by the nonlinear -4 Y

interaction: therefore, the generic output signal wave is an -5 -2.5 0 t (ps) 5 7.5 10 12.5
ordered train of TWI solitons, as illustrated in Fig. 2. Smaller

ml'glal amplltudes of the signal wave produce blgger timeé g1, 4. Signal and idler output amplitude from numerical veri-
shifts. Figure 2 shows the output for two different input sig-fication. The pulsds) is the common signal output predicted ana-
nal intensities: in agreement with theory, the smaller signajytically (the outputs from all four processes are indistinguishable
input produces longer delays and increased separation of thée pulses1-i4 are the idler outputs that for the particular choice
output solitons[Note that Eqs(16) and(20) give the phases of trigger withp(2.7)=75(1.0)=1 should reproduce the input pump

and coordinates of the time-reversed signal oujdute third  profilespl—p4 in Fig. 3: the slight deviations are due to the use of
terms, determined entirely by the pump, show the effect ofthe approximate expression fpr
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FIG. 5. Trigger signal amplitude input for a numerical demon- 22 24 26, (09) 28 30 32
stration of the control of soliton positions. The pump for all four
trigger pulses is a two-soliton 2 sethprofile. FIG. 7. Signal amplitude output from triggers 3 and 4 in Fig. 5.

IExprestsiolnS/;ﬁG)—(Z'lt)' ShO\]th;hat t:\e f’haﬁte of 'thfhtrig.ger js designed to delay the emission of the small solitd8) (is
pudse_cjzlon rols the ?OS'R'OfrEZOS] eouhpu Sg'tﬁnf |fn eS'gl'lnaLO.SSG—O.MZ)exp(—tz), which is designed to delay the
and idier waves. 1n Re we showe at for sma mission of the large soliton; and t4) s

i nereasing order. In ?ﬁ!!";‘aspii”ﬁégix?é‘l‘é“iﬁisbéna;}‘y‘;'{;“f‘gb-631—9-706>exp(—tzx which s designed to_produce
show how to adjust the positions of the output solitons by, ymmetric peak COmMpression outpu't for the idler and simul-
changing the shape of the input trigger pulse tane_ously reproduce the S|gna_l profile.
: L Figures 6 and 7 show the signal output from the decay of
If the parametepsy in Egs. (20) and (21) is near zero, the 2 sechj pulse (a symmetric two-soliton profild Eq.

then thekth soliton in the signal or idler waves experiences(l3)] containing solitons with amplitudeland ) with the

?;meeﬁgrepme igrgitzrr:tinit(jjngg EEZ :Eittei;(’lics?g:édSp;?gfiethin%afour triggers in Fig. 5. The idler outputs are pure two-soliton
3,k 7 1 H H 1 H H H

can control the positions of the output solitons by altering th ulses. The signal radiatidfrom the triggey is visible at the

ha f the sianal triager. It sible to isolate the lar ear of the fourth pulse in the signal output. The Gaussian
shape ot e sig gger. 1S possivle 10 1Soiate the ge":ﬁulse t1) produces a generic output with the two solitons

so:iton byf selecting triggers which d?llay the other ?ma"efairly close together. Triggert®) which was chosen to make

solitons. | =1 [or, more generallyp=ex or . <

someq] folr)(a7l7lgyk)um [TWI solit%ns theyrl: the gﬁtmﬁkt) signal (0.5)=0 by se_ttlng approximatiofd.8) eq“?" to zero, pro-
hase(l[E (16)5) satFi)sfy Eq.(10) V\;ith alternatin P hasges duces, as predicted by EQO0), a substantial delay of the

phe q- . 9.2 9p = ?mall 7,=0.5 soliton and results in substantial separation

while the output idler phases are a scaled copy of the NPWetween the output solitons. Trigga®B) which was chosen

phases: in this case the signal output is the symmetric profil . X
. : : : 0 makep(1.5)=0 by setting approximatioril8) equal to
with alternating soliton phases and the idler output repeatgero’ delays, as predicted by EQO), the large s ;= 1.5

the pump profile. The alternating phases superposition pro-" . . ;
vides the maximum intensity and compression of the pulsesomon' Trigger {4), which was chosen to make(0.5)

However, these profiles have satellite peaks containing a cXP(~0-5) andp(1.5)=exp(~1.5), produces, as predicted

substantial fraction of the energy. Note that the idler outpu y dE%sl.(16) .zta;ctiélj)alsymmetrip OlithpUt for both ]E.Te sigdnet1rll

repeats the pump profile when the signal output is the maxiand ldier, wi € idler repeating the pump profile and the

mal amplitude symmetric profile. Figures 5—7 show some o ignal showing maximal compression with alternating phases
etween the solitons.

the possibilities for controlling the shape of the output Delaving th d solitofFig. 6 2 ¢
pulses. Figure 5 shows four different trigger profilest)(is _ belaying the second Solitorig. b, curve £ generates a |
single, clean-profile, compressed soliton pulse from a multi-

0.2 exp-t"), which is included to show the typical effect of soliton pulse. If the process is stopped after only the largest
a moderate trigger;t2) is (0.45@—0.112)exp(—t?), which ton p ' P Ppec y 9
soliton is formed, the output pulse will have a clean sech

profile with the durationmuch less than the pump duration
for an intense pumpof the largest pump soliton. For the
two-soliton 2 secHj pulse, the output signal durationv&/3
that of the pump. The effect is more dramatic for pumps
containing more solitons: for tha-soliton n sechf) pulse,
the duration of the pulse obtained by isolating the largest
soliton[Eq. (13)] is v2/(2n—1) times that of the pump. In
this case the fraction of the pump energy contained in the
smaller TWI solitons is lost. For stronger compressions more
energy is lost. Nevertheless, the energy of the largest pump
TWI soliton is considerable. For example, 20-fold compres-
sion is possible with an energy conversion of 20%. This
5 10 15 t (ps) 20 25 30 matter is discussed in detail in Sec. IV.
) Another compression possibility is to generate symmetric
FIG. 6. Signal amplitude output from triggers 1 and 2 in Fig. 5. distribution(10) by making the reflection coefficient( ;)
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equal to 1 simultaneously for all the pump solitons to pro- CRYSTAL OUTPUT

PUMP
duce the peak soliton interactigfigs. 5 and 7, curves)4
This generates stronger compression at the cost of satellit /\ A/\
pulses. For the two-soliton 2 sethpulse in Fig. 7 64), the e
output signal amplitude is about three times greater than tha
of the pump. The effect is more dramatic for pumps contain-
ing more solitons: for the-soliton n sechf) pulse, the am-
plitude compression by creating the optimal alternating LOSSES
phasedEg. (10)] is close ton times with a very short dura- A
tion. Although energy conversion is high in this second type A /7
of compression, the appearance of satellite pulses is a major '
drawback. FIG. 8. Schematic of experiment.

IV. EXPERIMENTAL OBSERVATION (i) Compression takes place only when the SPOPO is
OF TWI-SOLITON BEHAVIOR well above threshold. The duration of the compressed wave
decreases as thpump intensity increases
In this section we compare predictions of the TWI-soliton  (iii) Only thefasterof the signal and idler pulses can be
theory with the experimental results observed in RE8s/]  compressedn Refs.[6,7], the fastest wave was referred to
for an experimental synchronously pumped optical parametas the “idler”; in this paper the fastest wave is the “sig-
ric oscillator(SPOPQ. Dispersion is extremely small in this nal.”)
SPOPO, and the observed soliton behavior cannot be attrib- (iv) At a high pump level, a number of pulses are gener-
uted to the well-known cascaded quadratic nonlinearityated in the signal envelope.
(x@x x?)) soliton like waves which can appear only in  As shown below, these observed phenomena are surpris-
strongly dispersive quadratic media. ingly well matched with the TWI-soliton theory of OPG pro-
There is difference between the notation of the presentesses. The general three-wave interaction thébpy-17]
paper and Refd6,7]. The present paper considers parametidentifies two distinct regimes depending on whether the
ric amplification which corresponds to the steady-state regroup velocity of the high frequency pump does or does not
gime in the SPOPO. In the theoretical section of this papelie between the speeds of the idler and signal. The regimes
the “signal” refers to the trigger wave initially present be- are FSF, when the high-frequency group velocity is between
fore the interaction. In Ref$6,7], the signal wave refers to the velocities of the signal and idler; and SFF, when the
the highest frequencfand intermediate speefundamental pump group velocity isnot between the velocities of the
wave. To avoid confusion we will continue to refer to the signal and idler.
fastest fundamental wave as the signal. The behavior of the intermediate wave in the SFF regime
The experimental SPOP{5,7] consists of a transverse for parametric generation is very interesting. Extensive nu-
walk-off compensated two-barium-bord®BO) crystal con- merical calculations show that it generallgxcept for ex-
figuration pumped by the third harmoni@55 nm of a  treme cases when the speeds of the interacting waves are
pulsed Nd:YAG(yttrium aluminum garnetlaser. The third very close to each otheemerges as a single hump with a
harmonic pump consist of approximately >6Q1-ps pulses very clean profile. We cannot explain this behavior analyti-
with the energy of a single pulse up to 53. The 0.7-mm cally now: this case requires further development of the IST
pump-beam diameter within the crystals gives virtually to-theory. Extending the theory to this case would be very in-
tally overlapped propagation of the pump and oscillating rateresting for two reasons. The first reason is that in normally
diation along both crystals. The SPOPO oscillates at frequerdispersive nonlinear media the intermediate speed wave is
cies from 400 to 2300 nm. The balance of each round trighe higher frequency output pulse, and compression of this
between losses at the optical elements and the nonlinear ienvelope would give a high-frequency tunable radiation
teraction with a fresh pump pulse determine the output of theource. The second reason is the very clean temporal profile
SPOPO. The time delay between the oscillating pulse andf the intermediate speed pulse particularly the absence of a
individual pump pulses at the input of the first crystal istail.
determined by the SPOPO cavity round-trip time. This time The experimenf6,7] is in the SFF regime, since the ex-
delay is controlled by cavity length detuning () from the  perimental conditionsN3=0.53um, \»=0.48um, and\ 3
length at which the energy threshold for oscillation is a mini-=1.3um) in BBO give—all optical data is from Reff26]—
mum. WhenAL>0 the SPOPO cavity round-trip time is group velocities of v;=1.67x10%cm/sec, v,=1.7
greater than the interval between pump pulses, and the oscik 10'°cm/sec, andv;=1.78<10%cm/sec. In the SFF re-
lating pulse enters the crystal behind the pump every roundime TWI-soliton theory predicts that only the fastésig-
trip. A schematic of the experimental setup is shown in Fig.nal) envelope can contain TWI solitons: so in the experiment
8. The main results of the experiment are the following.  TWI-soliton compression is only possible for the fastest
(i) Compressior{up to 20-fold is due to the pronounced wave. This theoretical prediction agrees very well with the
group-velocity mismatchf the pump and oscillating wave in experimental data, where no compression was observed for
the nonlinear crystal. The compressed pulses exkditon-  the intermediate speed wave. Such a clear indication of the
like behavior: the signalfastes} rapidly reaches a steady distinction between the two waves predicted by theory, and
state with stable pulses. Second-order dispersion effectsbserved in experiment is a strong argument for the soliton
(GVD) did not have substantial influence on process. nature of the parametric compression. However, a rigorous
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wave are very close for these two cases. In fact, when the
initial shape of the pump is Gaussian, the output shape of the
——signal 1 fastest wave is always the sequence of decreasing-amplitude,
---Signal 2 oscillating humps predicted by the rigorous FSF theory. The

1 area of the first humfwhich is the largest soliton in the FSF
case but isnot a soliton in the SFF cagds within a few
percent ofsr in the SFF case. However, the following pulses
B have areas considerably smaller than the “soliton area” of
! mTdler 1 7. The height and duration of the leading pulse are also very
foldler 2 close for the corresponding SFF and FSF cases. The behav-
! ior of the slower(idler) wave is completely different for the

~40 220 0 20 20 SFF and FSF cases.

& (ps) Figure 9 compares numerical simulations of parametric

FIG. 9. Comparison of the signal and idler amplitude Outputamplification in the FSF and SFF regimes: signal 1 and idler

from the decay of a 2 sedd) pump in different velocity regimes. ar% from the exr())erlmental SFF pagam.eterf 1.67
Signal and idler 1 are the SFF case. Signal and idler 2 are the FSE 10, v,=1.71x10", andv;=1.78X 101_? signal 2 and
soliton decay case. In both cases the pump is 2 géghthe trigger idler 2 are from the FSF parameters obtained by interchang-
is 0.05 sech, and the frame of reference is moving at the averagdnd v, andvs, i.e., v,=1.67X 10", v3=1.71x10", and
of the extreme velocities. Note the marked qualitative similarity ofv,=1.78X 10, Note that the signal pulséparticularly the
the leftmost portion of the signal curves. most intense lefthand portionare similar in both cases, and
that idler 1(as predicted by theopdoes not have the distin-
analysis of the experiment requires the complete analytiguishing solitons characteristics of idler 2.
theory for the SFF regime: unfortunately this theory is not as This analogy between the behavior of the fastest waves
advanced as FSF theory. We anticipate future theoretical ader the SFF and associated FSF regimes allows us to give a
vances will provide the analytical tools to complete an exacyjualitative explanation of the behavior of the fastest wave in
guantitative picture of the SFF process. the SFF case by using the FSF theory. In the remainder of
Here we attempt to explain the SFF process qualitativelythis section we describe the behavior of the fastsgma)
using the well-developed FSF theory. Our qualitative dewave by considering the corresponding FSF regime, ob-
scription is based on the numerically observed fact that théained by switching the idler and pump group velocities.
behavior of the fastest wav@hich can carry TWI solitons Tables | and Il summarize the soliton content of sech profile
in the SFF regime is surprisingly close to the behavior of thgpump pulses for the corresponding FSF regime in which the
fastest wave in an associated FSF regime: the FSF reginpump wave contains solitons. In the FSF case these pump
“corresponding” to a SFF regime is obtained by interchang-solitons split and emerge according to the theory developed
ing the group velocities of the idler and the pump. Numericalearlier in this paper: the lead pulses in the SFF and FSF cases
calculations show that the output shape of the fagtégha) are qualitatively similar. The similarity between the two FSF

TABLE I. Soliton content ofn sechf) pump pulsedFSF regime The first three columns contain the peak amplitude, width, full width
at half maximum of intensityFWHMI), and soliton conterftEq. (13)] of ann sechf) pump pulse. The next two columns contain the peak
amplitude and widtitFWHMI) of the largest soliton in the pump; the adjacent columns contain the compression obtained by isolating the
largest soliton and the percent of the pump energy it contains. The last column is the anpliudehe sum of the soliton®f the pulse
formed from the same solitons with symmetric alternating phpEgs(10)].

n sechf) Largest .
pump soliton Alternating
phases
n Amp. Width 7's Amp. Width Comp. Energy % Amp.
1 1 1.762 ; 1 1.762 1 100 1
13
2 2 1.762 — 3 0.587 3 75 4
2'2
3 3 1.762 135 5 0.352 5 56 9
2'2'2
4 4 1.762 } § ? Z 7 0.652 7 44 16
2'2'2'2
5 5 1762 13579 9 0.696 9 36 25
2'2'2'2'2
n n 1.762 13 ...n—} 2n—1 L1762 2n—-1 10 2t n2
2’2’ 2 (2n-1) n n?
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TABLE IlI. Soliton content of sechifn) pump pulsesFSF regimg The first three columns contain the peak amplitude, WiBiWHMI),
and soliton contentEqg. (13)] of an n sechf) pump pulse. The next two columns contain the peak amplitude and WitHHMI) of the
largest soliton in the pump: the adjacent columns contain the compression obtained by isolating the largest soliton and the percent of the
pump energy it contains. The last column is the amplit(tdéce the sum of the soliton®f the pulse formed from the same solitons with
symmetric alternating phasggq. (10)].

secht/n) Largest .
pump soliton Alternating
phases
n Amp. Width 7's Amp. Width Comp. Energy % Amp.
1
1 1 1.762 5 1 1.762 1 100 1
2 1 3.524 1‘ § § 1.175 3 75 2
4’4 2
3 1 5.286 135 ° 1.057 5 56 3
6'6'6 3
4 1 7.048 1' § E) Z 714 1.007 7 44 4
8'8'8'8
5 1 gglo L3579 9/ 0.979 9 36 5
10’10’ 10’10’ 10
n 1 1.762n 13 .1 , 1 L.762 2n—1 10d2-L n
2n'2n’"" 2n n (2n—-1) n®

and SFF fastest waves in Fig. 9 is dugtasisolitonbehav-  soliton parametric amplification extremely stable. The FSF-
ior. Qualitatively, the analogy is explained by the area theoSFF analogy suggests that the development of steady-state
rem (4), which ensures that any wave which can containpulses and insensitivity to losses observed in the experiment
TWI solitons(such as the fastest wave in the SFF ¢ae®s  were a SFF analogy of this FSF TWI-soliton stability. Inci-
contain solitons if it has normalized area exceeditfg. In  dentally, the parametric decay process does not possess this
the SFF case the fastest wave had no solitons before thgapility when when none of the waves can contain TWI
interaction(it was small, and since it can gain no solitons gjitons. In the nonsoliton quasistationaty, Ev,=v3) re-

from the pumpl(in the SFF case the pump has no solifdbs  gime the process output is extremely sensitive to small
must have no solitons after the interaction and must Chang\‘?ariations in the trigger pulse.

phase to avoid violating the area theorem. Although the nu-
merics show striking analogies between the behavior of th%
I

fastest waves in the SFF and FSF regimes, many features . . .
. . . - after the interaction the output TWI solitons have alternat-
the SFF regime are unknown. Future rigorous investigation, S . ) .
g sign “symmetric” [Eq. (10)] phases: the parametric de-

using IST theory, may reveal many unknown features of the . X .
SFF process. In fact, preliminary analytical consideration of @Y Produces such outpiq. (16)] if the trigger pulse gives

the SFF regime shows that the pump will have TWI solitons?( ) =1 for all the pump TWI solitongor, more generally,
if the signal and the pump waves significantly overlap at the?(7x) =€xp@zJ for an arbitrary real constardf]. Figure 5
start of the interaction. However, the rigorous theory for the(t4) shows a trigger that does this for a two soliton pulse:
SFF case is beyond the scope of this paper. curve (34) in Fig. 7 shows the maximally compressed signal
The FSF theory developed in this paper shows that pareeutput while the idler duplicating the pump profile. Tables |
metric amplification of small signal pulses is extremelyand Il give compressions for sech profile pump pulses.
stable with respect to trigger pulse intensity. The TWI- The second type of parametric amplification compression
soliton explanation of this stability is simple: the parametricis to isolate the dominant pump soliton. As shown by Egs.
process output is a train of TWI solitons determined by the(16) and (17) or (20) and (21) for small triggers, the largest
number and size of the TWI solitons contained initially in soliton is the first to emerge. Figures 2 and 9 show the output
the pump. Varying the trigger pulse intensity changes thef the nonlinear process when the interaction length is very
time-delays between the emerging TWI solitons but does ndbng. In practice, the nonlinear interaction is interrupted long
change the general shape of the output signal and idlepefore all the pump solitons emerge. For an intense pump
Moreover, expression@0) and(21) predict a slow logarith-  pylse containing many TWI solitons the output signal pulse
mic dependence of the time delay on trigger intensity. Evers 4 single, substantially compressed, clean TWI soliton if the
large variations of the trigger pulse intensity produce onlyjength of the nonlinear medium is chosen so that only the
small changes in the output: in Fig. 2, increasing the trigg.e\zirst soliton forms. Longer or more intense pumps give

intensity by a factor of 400 produces only minor changes Irhigher compression. Tables | and Il also give the compres-

the output train of five TWI solitons. Combined with the _: - -
stability of the process with respect to the pump shape, dis§|on values and the energy efficiency coefficients for sech

cussed in the previous sections, this feature makes TWIE)rOfile pumps. These tables give the soliton parameters of

There are two main soliton compression mechanisms for
?rametric amplification. Maximal compression is achieved
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TABLE lll. Parameters for comparison of theory and experiment.

Phase matching Idler Signal Pump

angle(degrees Ay um viCm/sec A, um vy, Cm/sec Az um v3 cm/sec
Case 1 27 1.80 1.2810'° 0.43 1.70<10t° 0.35 1.6 10°
Case 2 30 1.30 1.2010%° 0.47 1.7x101° 0.35 1.68<10°

the largest TWI soliton contained in pump. After this soliton the appropriate nonlinear coefficient for BBO as 2.3 pm/V.
moves to the signal wave its amplitude must be normalized&Estimating the pump energy shows that in the corresponding
according to relationshipd4) and(15) and then(2) and(3). FSF case each pump pulse could contain 10-15 TWI soli-
This normalization is important and in extreme cases canons. Tables | and Il predict that the largest pump soliton
substantially alter the results. However, in the general casshould be 20—30 times shorter than the pump. There are two
when the speeds of the three waves are well separatefjctors that need to be accounted for: the first is the normal-
Tables | and Il give a good idea about the compression pazations (14) and (15) describing the transfer of the pump
rameters. TWI soliton to another envelope; the second is the amplifi-
A very attractive feature of compressing pulse by isolat-cation and compression which results from the proximity of
ing the largest soliton is that the compression appears natd-WI solitons in the train when the phases are alternating. For
rally: for small Gaussian trigger pulses Eqé6) and (17)  the experimental frequencies in BBO, these factors act in
show that the largest TWI soliton always emerges first. Inopposite directions, and approximately cancel. The theory
practice, however, it is difficult to stop the interaction at predicts a compression ef20 for a pump intensity of~800
exactly the right moment, and a second and even a third TWMW/cm?, exactly what is observed in the experiment. The
soliton may also form: although this increases the procestheory predicts higher compression for higher intensities;
efficiency, it spoils the shape of the compressed pulse. Thowever, in the experiment the compression coefficient sta-
obtain cleaner output pulses, one should use less intense trigilized after the pump intensity reached 800 MWfcrwe
ger pulses by introducing losses into the resonator: largbelieve this to be due to spatial pulse modulation, which is
losses in the resonator decrease the intensity of the triggereglected in the theory.
pulses and increase the separation of the output solitons pro- In the experiments the nonlinear medium was roughly the
ducing cleaner output. This behavior was observed in théength required for the first TWI soliton to form. For low
experiment. Another way to obtain clean pulses is to tailorintensity pumpgFig. 10(B)] the profile is clean without sat-
the shape of the input signal pulse. Section Il shows how tellites because only the most intense TWI soliton has ap-
produce pulse profiles by designing the trigger to delay thepeared: the compression is roughly a factor of 12. As the
appearance of the smaller TWI solitons. This technique capump intensity increases the temporal output profile devel-
produce compressed pulses with very clean sech profilesps additional maxim@compare Fig. 1A) with Figs. 2 or
Curve (2) in Fig. 5 is the trigger giving the signal output 9] because the nonlinear medium is now sulfficiently long for
(s2) in Fig. 6: the smaller soliton is strongly delayed, andthe less intense solitons to form and spoil the clean profile.
both the signal and idler output are clean. Theory predicts that the duration of the dominant pump soli-
Tables | and Il show that the intensity of the largest soli-ton should be inversely proportional to the square root of the
ton is approximately twice the pump intensity when there argoump intensity. The 0.7-mJ pul$Eig. 10B)] has a duration
more than three pump TWI solitons, and the duration of theof 7~850fs. Computing the proportionality constant using
largest soliton decreases rapidly as the pump energy irthis value gives a prediction that the 1.8 mJ pul§ég.
creases. The primary drawback of compressing by isolatind0(A)] should have a duration of 530 fs, in good agreement
the largest soliton is that only the energy of the largest soli-
ton is used(the pump energy in the smaller solitons is dis-
carded, and the efficiency drops for high compressions. 0T Pump 1.8 mJ ] A
However, as the tables show, even for high compressions the 08t~ 600fs
largest soliton contains a significant portion of the initial
pump energy. For example, ninefold compression can be
achieved with an energy efficiency of 36%, and 20-fold com-
pression with 20% efficiency(Efficiency is defined as the

ACF signal

20 10 0 10 20

fraction of the initial pump energy in the largest TWI soli- Autocorrelator delay (ps)
ton.) Note: 100% efficiency means that all the pump energy
is transformed into the signal and idler. This energy is parti- 0T pump 0.7 my § B
tioned between the generated waves according to their fre- o Qe[ r=ss0ts
quencies and normalizatiori8) and(3) and (14) and (15). 5T
The experimental compression of the fastest wave ob- P o4r
served in Refs[6,7] was analogous in behavior to isolating 02} -
of the largest TWI soliton. We compared the theory and the o T 0 o0 10w
experiment at two different frequencies and phase matching Autocorrelator delay (ps)

angles. The parameters for the two cases are summarized in
Table Ill. All the data are taken from Ri26], which gives FIG. 10. Experimental results.
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observed analogy between the FSF and SFF cases for the
signal wave.

1.2 TWI-soliton theory explains the observed soliton features
of the compression of the fastest wave. The inability to com-
press the intermediate speed pulse can be explained by the
absence of TWI solitons in the corresponding envelope. Gen-
6 erally this nonsoliton wave has a very smooth distribution,
with a duration approximately equal to the pump duration.

(=]
[oe)

Compression
[

0.4 Compression of the intermediate wave is not forbidden by
0.2 TWI-soliton theory. In particular, it can appear as a byprod-
uct of the compression of the fastest wave when the idler and
6 500 200 600 800 1000 1200 signal speeds are close together, the behaviors of the two

Pump Intensity (mW/cm?) pulses are very similar, and it is possible to compress both
pulses. In fact, compression of this sort was observed in a
periodically poled lithium-niobat€27] experiment.

Although, the theory in the present paper describes only

with the experimental value o£600 fs. Figure 11 compares perfectly matched interaction, the generalization to nonzero
the theoretical compression predictions with the experimenphase mismatch is straightforward. The simple phase trans-

tally measured values: for pump intensitie§00 MW/cn? formation in Ref[11] shoyv how phase mismatch is related
the theory provides a good fit with the experimental values!© the real part of the eigenvalués.. The effects ofAk
We believe the small discrepancy between theory and experi: 0 Will be considered in further publications.
ment for the last point on the graph is due to the spatial

modulation of the waves. ACKNOWLEDGMENTS

FIG. 11. Comparison of experiment and theory.
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The TWI-soliton theory gives a clear picture of some POrted in part by AFOSR.
complicated features of parametric amplification. The ability
to predict and control the form of the output pulses may have APPENDIX A: DERIVATION OF EXPRESSIONS
important practical applications in pulse compression, pulse FOR PHASES
shaping, and optical computing. Although the IST theory has ) ) )
existed since 1974, it is only recently that pulses sufficiently Analysis of the TWI equations on the basis of IST theory
short and intense to test and use it have become technologdil 7] shows that, when the envelopes of all three waves are
cally feasible. There is currently a growing body of experi-S€parated, and on compact support, each of the waves corre-
mental results that we believe can be described by thi§Ponds to a certain scattering matrix:
theory. In this paper we compared the experimentally ob-

served 20-fold signal pulse compression in a synchronously 1 0 0 a —b, O
pumped OPO with TWI theory. The experimental data is in a S=|0 a -b,|, S,=|b, a, O,
good agreement with TWI-soliton theory. 0 by a 0 o 1

Although, the mathematical basis of TWI-soliton theory is
already well developed, there are numerous questions which
require more detailed investigation. In this paper, we consid- 1 0 0
ered the simplest FSF interaction in which all three interact- S=(0 a —Hl , (A1)
ing waves can have TWI solitons. For practical purposes it is 0 by a
very important to improve our understanding of the SFF in-
teraction: because of normal dispersion the high-frequenc . _ _
pump is usually slower than the IC;,ignal and idler. Th?a SF&heE \j are complex varlablesaj—.aj()\j),- b= bj()),
case is also very useful in the new periodically poled nonlin-2 = &;(A;), andb;=b;(X;) are analytic functions on the en-
ear media, because it allows the use of the latggcoeffi-  tre plane of the corresponding complex variablgs and
cient. aj(\j)=[a;(A])]* and bj(\;)=[bj(\])]*. Each of the

It is also important to develop the theory for initially over- three matrixegAl) is called a Zakharov-Shabat matrix for
lapping pulses. This requires development of the Zakharowthe corresponding wave. Solitons in each envelope corre-
Manakov scattering problem, which has thus far not attractegpond to the zeros of the coefficieaf(\;) of the corre-
the attention of the research community. Further developsponding ZS matrix. In this paper, we will assume that the
ment of the ZM problem would allow us to consider over- functionsa;(\;) have zeros only at the points whexe is
lapping initial pulse profiles: in practice the limited length of pure imaginary\;=i7;, wherey; is the imaginary part of
nonlinear media ensures that input pulses overlap. This ovel;. This situation corresponds to the case of perfect phase
lap can considerably alter the interaction. For example, prematching,Ak=0. Generalization to the cagek#0 can be
liminary investigation shows that for the ZM interaction done using the phase transformation from R&1]. Here we
TWI solitons can appear in the pump wave even for the SFHlo not do this for the sake of simplicity. Parametegsare
case. This may provide an explanation for the numericallyconnected by the relationships
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V3o wherev; are the group speeds of the waves. Notice again,
771=E713=6¥17]3, (A2)  that in the present paper, the time and space coordinates are
: interchanged as compared with the wdd7]. Expression
(A8) enables us to relate the elements of the scattering matrix
before and after the interaction. If in the beginning of the

interaction, the wave with the smallest velocity was ab-
_ ~_sent(the fastest wave witly, is the signal wavg then the
Each of the functions;(7;) are assumed to have a finite corresponding ZS matrix for this wave is the identity matrix:
number of zeros,»;,. The value of 7, for which ) =al)=1 andB(zi)zb(zi)zo. EquatingS") and () for

-0 qi i o i : 2 =
a;(7;,) =0 gives the amplitude of thith soliton in thejth ;0 case, we obtain the expression for the reflection coeffi-
envelope. As described above, solitons can move from th

pump to the signal and idler and back. When solitons changglempzo\) for the idler wave:

envelopes, their amplitudes must be normalized. If before the ) k)
b b3 by ex;{ 7

V31

N2 3= 273 (A3)
2.1

interaction the pump had TWI solitons with amplitudes
73k, then after the interaction the signal and the idler waves
will receive these solitons with their amplitudes dictated by

&l Al

2
2—7
U2

the relationships or
() ()
V32 b 3 i 72
=82 = , A4 =—~=—-b{"exp2—2|. A9
M1k Va1 M3k— X173k ( ) P2 a(zf) ag) 1 v, ( )
IO Here we used the relationshiy 'at' ) =al’af) .
M2k~ T3kT F2 M3k (AS) To obtain the final phases of the idler wave, one has to

find the residues of the reflection coefficie(&9) at the
This means that ifi3(%) in the beginning of the interaction PoiNnts 7,y connected with the initial pump soliton ampli-
has zeros at the pointgs,, after the interaction, the ele- tudeszg by relationshipgA5):
mentsa, (n) anda,(») will have zeros at the points, , and

72 Connected with the pump solitons with the normaliza- D) —ib§(73) T , 72
tions (A4) and (A5). 2K 1’ ex - z
To find the final soliton phases, we need to obtain expres- d_77za(3l)( 73] 7= gy

sions of the ratios;/a; for each wave at the end of the

interaction. Such ratios in IST theory are called reflection ) 72
coefficients. At each point wheeg becomes zerdy; /a; has =ayD3iby’ ex 20—22
a pole. Soliton phaseB; , can be obtained by taking resi-

dues of the reflection coefficients at those points whergynen taking derivatives, we again used expres$a).
aj(7; ) =0. Such poles correspond to TWI solitoristere The analogous expression for the reflection coefficient of
indexj corresponds to the number of the envelope, and indeye signal wave with the largest velocity, cannot be ob-

k cor_responds to the soliton nu_mk)eT.he overall scattering tained from Eqs(A1)—(A7) directly. To find the reflection
matrix S for the TWI problem is the product of the three cqefficients for this case, we use the fact thahft,z) are
matrixes corresponding to each of the interacting waves. If iyo,tions of systen(l), then the functions-A;(—t,~2) are

the beginning of the interactiore{> —x,t— —x) the sec- 5150 solutions of the same system. The final result of the
ond wave was in the front of the third and the first wave gjrect problem will serve as initial conditions for the problem

; (A10)

followed the third, then inverted in time and space, and vice versa. Therefore we will
0 Helal) consider a process where, at the end of the interaction, a
sh=sysy’sy, (A6)  small signal waveA,(t) with a speed, is in the front of a

] ] o ] large pump waved;(t) with no idler wave. The initial con-
where the index stands for “initial.” (Notice that our no- ditions for this reversed process will be a signal wave with
tations are different from that in Reff17].) Due to the dif-  the amplitudeA,(—t) chasing a large pump with the ampli-
ferences between the speeds, the waves reorder after the fjge A (—t) with no idler wave. The final coefficientsand

teraction: b for such an inverted process will be equal to the initial
)t values of the direct process, and vice versa. Using this fact,
st=g"s sy, (A7) we obtain
where an indeX stands for “final.” The order of the final b{") b" N1k
scattering matriceS!") reflects the reordering of the pulses. 20~ gl A2 =2 (A11)
1 1 93

The evolution of the elements, ,, of the scattering matri$

is given by the expressicii7] The final soliton phases can be obtained by taking residues

of the functions(A9) and (A11) at the points where coeffi-
(A8) cientsa anda of the corresponding ZS matrices are equal to
Zero:

N.Z)=a, (A0 ing| 2m—Yn
anm(N,Z)=a, n(N,0)exg —iNz P
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b(li)(m) M1k ing analysis, we will assume that the pump before the inter-
D)= exr{—z—’z} action consisted only of TWI solitons and had no radiation.

. d : . - .
ag-l)d_m[a‘(?‘l)(n3)]|’71:’71,k In this case the coefficients;( ) can be written as

(A12) n

ay( ):1—[ 73~ M3k
Notice that the differentiation here is done with respect to the 3\ k=1 M3t M3’

variable ,, but that the coefficiend;(73) is a function of

773. The connection betweem, and 73 is given by relations where g is as usual the amplitude of theh soliton in the
(A4) and (A5). Expression4) shows that an intense pump pump. Differentiating Eq(A13) with respect tor; and using
wave consist almost entirely of TWI solitons. In the follow- relationship(A2) we obtain

(A13)

1.d

_ ay d7s
717 Mk

n
1 N3k~ M3

_ 2a1m3xj=1 M3kt M3
737 M3k j#k

n
73— 713
k=1 M3t 73

(A14)

Notice that the derivative of the product in EGA14) has %
only one nonzero term at the poingg= 73 . After a sub- f |qi(t)]eldt<eo (B3)
stitution of Eq.(A14) into expressiornA12), we obtain the o
expression for the final phases of the signal wave:

al

for any positive numbek, then all solutions of systertB1)

are asymptotic as— * to simple exponential functions.
(Clearly, this assumption imposes no physical restrictions on
the pulses that can be considered since all optical pulses are
bounded in both time and spac&loreover, any solution of

Eqg. (B1) can be written either as a linear combination of the

One should be careful when using expressi@i5). Be-  two solutions¢ and ¢ system(B1) satisfying
cause this formula was obtained by reversing time, the out-

N3kt 73 F{ N1k
—texp2—1z|.

U1

n
2173 kH
! =1 M3k M3

] #k

oy

(A15)

put shape of the ;ignal wave determined by E&L5) will b 1 e N G, eM  when t——c, (B4)
also be reversed in time. 0 -1
APPENDIX B: ZAKHAROV-SHABAT PROBLEM or as linear combinations of the two solutiofisand ¢ sat-
AND REFLECTION COEFFICIENTS isfying
ExpressiongA10) and(A15) connect the initial and final O it — 1] _int
scattering data for the parametric amplification process. Both =187 =)@ when t—+e,  (B5)

expressions contain parametesand b from Zakharov- ) o ] _ )
Shabat scattering matrixé&1). In this appendix we show wherg we have omitted the indéxor clanty. Either pair of
the connection between these coefficients and the initial dat&inctions forms a complete set of solutions of the system

The connection is based on the direct ZM scattering prob(B1). So the first pair of solutionéB4) are a linear combi-
lem [17] scattering problem. When the pulses are physicallyation of the the second p&iB5), i.e.,

separated, as they are before the interaction, the ZM scatter- Cint

ing problem reduces to a set of threme for each pul9e&ZS d=ay+ b:,b—>(2 it as t— 4o,
scattering problems €
Trinui=a (o - — _ b e M
U; +1hy; gi(t)vi, ® ¢=b¢— ay— a e”‘t as t— +oo. (B6)

Ui,_”\Ui:_qi*(t)Ui, .
The coefficients, b, a, andb (which depend upon the spec-
with potentialg;(t) given by tral parametei) relating the two sets of solutions form the
Zakharov-Shabat scattering matrix

1
qi(t)= 7Ai*,0(t)- (B2)

Szs= (B7)

a(n), —b()\))
b(N), al)
The functionsu andv are the eigenfunctions and the param-
eters\ the eigenvalues of the ZS problei@l). In Ref.[23] it was shown that for potentials satisfyiri§3)

If potential (B2) decreases sufficiently rapidly as— a(\) anda(\) are analytic in the upper-half and lower-half
+oo that complex planes, respectively. Formul&$—(7) show how to
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recreate the shape of the pulse with known soliton content p
(and negligible radiation System(B1) shows how to com- M
pute the soliton spectrum and radiation content of the initial 5
pulsesA; o(t) = y;q;(t). The radiation spectrum in;(t) is
determined by the definitiofiB6) of the scattering matrix
and the solutions of systeltB1l) and boundary conditions 3
(B4) and (B5).

To complete our analysis we derive simple approxima-
tions, in terms of the initial pulse profiles, for the values of 1 *

e R R T T
****** HOEX KKk ek ke

Primary Peak

Secondary Peak

b, andb{’/a{"’ occurring in(A10) and(A15). To do this we
need the ZS scattering matriB7) for the small potential

q(t)=Ay ((t)/ v, corresponding to the small initial signal

pulse at the purely complex valugs=i»,,=ianzy corre-

0 0.5 1 1.5 2 2.5 3
predelay (FWHMI)

FIG. 12. Effect of predelay on interaction. Signal output ampli-

sponding to the solitons in the intense initial pump. As be-yde for the interaction of an intense—4 sephoump with a

fore, we restrict attention to potentiaty(t)=q*(t), i.e.,
without a phase modulation. Since the potengiél) is very

small—0.1 sedB(t+At)]—trigger pulse for predelayat of the
small trigger ranging from 0.125 FWHMObf the large pumpto 3

small we employ a perturbation expansion. Assuming theewHMI.

potentialq is of ordere and substituting the expansions
U(t) =Ug+ €Uy (t) + €2un(t) +- -,

v(t)=vg+ evl(t)+szvz(t)+--- ,

and\ =i 7 into system(B1), and equating coefficients gives

the zeroth-order equations
Ug— nUp=0,
vot mve=0,
with solutions (B8)

up=e",

l)():e_ 7]t.

Note that in Eq(B8) and what follows the subscript refers to

the order of the approximation. Substituting into E§1)
gives the first-order system

u;—puy=q(t)e" ",
(B9)
vt o= —0y(t)e”.

For the boundary condition®4), from Eq.(B9) we obtain

t

u(t)y~em f q(t)e ?"dt+1],

(B10)
t
v(t)%—e‘”tf q(t)e?"dt,
which with Eq.(B6) immediately gives

a(nk)%1+f q(t)e ?nidt~1,

(B11)

b(nk)~—f1q(t)ez”k‘dt-

ComputingEandHis similar. Solving Eq(B9) for the initial
conditions(B4) gives

u(t)~e’7tJ’t q(t)e 2"dt,
(B12)

v(t)~—e

t
f q(t)e®"dt+ 1}.
Substituting into Eqs(B6) and (B12) givesEandHas

Am)~1+ f " q(e?nidi~1
(B13)
F(nk)~f q(t)e 27ddt,

Expressiong/A10), (A15), (B11), and (B13) give formula
(18). Before usingB1) the functionq(t) must be reversed in
time and the coordinatemust be changed te t.

APPENDIX C: NUMERICAL QUANTIFICATION
OF EFFECT OF PREDELAY

Numerous numerical simulations were run in order to
validate the use of the simpler ZS analysis for the FSF prob-
lem. The issue here is when can pulses be considered well
seperated. Figure 12 summarizes the signal output from a
sequence of numerical simulations of the decay of an intense
four soliton [4 sechl)] pump pulse triggered by a small
[0.1seck3(t+At))] trigger pulse for a range of values—in
units of the FWHMI of the pump—of the predelayt. For
predelays ranging from 0.125-3 FWHMI of the pump the
signal output had the characteristic alternating soliton profile
illustrated in Fig. 3: in Fig. 12, “Primary Peak” indicates the
amplitude of the largest soliton, while “Secondary Peak”
indicates the amplitude of the next largest soliton. The re-
sults indicate that for small trigger pulses and predelays
greater than 0.125 FWHM(of the intense pumpthe ZS
analysis gives less than a 15% error in the amplitude of the
leading soliton.
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