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Three-wave interaction solitons in optical parametric amplification
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This paper applies three-wave interaction~TWI!-soliton theory to optical parametric amplification when the
signal, idler, and pump wave can all contain TWI solitons. We use an analogy between two different velocity
regimes to compare the theory with output from an experimental synchronously pumped optical parametric
amplifier. The theory explains the observed inability to compress the intermediate group-velocity wave and
20-fold pulse compression in this experiment. The theory and supporting numerics show that one can effec-
tively control the shape and energy of the optical pulses by shifting the TWI solitons in the pulses.
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I. INTRODUCTION

To adequately describe three-wave interactions~TWI’s!
involving ultrashort laser pulses (t<10 ps), it is necessary to
account for dispersive effects. Normally, such effects lim
conversion efficiency and elongate pulses in second
monic generation~SHG!, sum frequency generation~SFG!,
optical parametric generation~OPG!, and optical parametric
amplification processes. However, as early as in 1968@1# it
was shown that in optical parametric amplification due to
group-velocity mismatch, the fundamental wave can be s
stantially compressed in a degenerate interaction~when the
group velocities of the two fundamentals are equal!. More
recently it was predicted theoretically@2,3# and observed ex
perimentally@4,5# that group-velocity mismatch~GVM! can
compress ultrashort laser pulses in SHG and SFG proce
In recent experiments pulse compression ascribed to G
was also observed in OPG and OPA experiments@6–9#. That
this compression was soliton in nature, as originally p
posed in Ref.@3#, had until very recently not been give
adequate consideration.

In Refs.@10,11# the soliton nature of pulse compression
the presence of the GVM was explained using analyt
soliton solutions@12,13# derived from the inverse scatterin
transform~IST!: extensions of these soliton solutions to no
zero phase mismatch were contained in@11#, where these
solitons were termed TWI-solitons to distinguish them fro
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other more familiar solitons. TWI solitons, although the
exist in quadraticx (2) media, differ greatly from the well-
known solitary waves generated by cascadingx (2)3x (2)

processes@14,15#. Unlike the cascaded waves, TWI soliton
are not a composition of two waves with different freque
cies and oscillatory profiles moving together. In contra
TWI solitons are single frequency pulses with smooth, fo
single TWI-soliton sech, profiles. Moreover, TWI solitons d
not require high second-order group-velocity dispers
~GVD! and are supported entirely by the first-order grou
velocity mismatch effect. This feature makes TWI solito
especially attractive for applications in all optical switchin
@16#.

The underlying scattering problem~developed in Refs.
@12,13#, and summarized in Ref.@17#! for the TWI system is
the unwieldy third order Zahkarov-Manakov~ZM! system of
differential equations. Fortunately, when the pulses do
overlap the ZM system factors into three simpler Zahkar
Shabat~ZS! scattering problems: the ZS scattering proble
underlies the nonlinear Schro¨dinger equation~NLS! soliton
theory, and has been intensively studied because of im
tant applications in optical data transmission.

The IST theory shows a connection between the scatte
problem for the NLS system and the asymptotic scatter
problems for the TWI system. A connection between t
TWI system and NLS equation is not surprising. As early
1976 the authors of@18# noted solitonlike propagation o
optical pulses in quadratic media. These phenomena are
subject of recent intense theoretical and experimental@14,15#
investigation. The connection between the ZM scatter
problem and three ZS scattering problems~one for the
asymptotic profile of each frequency! shows that we should
expect profiles similar to those seen in the NLS as out
from the three-wave interaction. However, one must reme
ber that, although the inverse scattering problems are
same for the NLS and the asymptotics for each frequenc

ss:
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TWI, the temporal propagation equations are, of cour
completely different.

In this paper we present results obtained using IST to
describing pulse compression effects in optical parame
amplification: it appears that IST theory provides an exp
nation of a substantial body of experimental data accum
lated over the last few years in optical parametric genera
and optical harmonic generation by ultrashort laser puls
Specifically, we explain the experimentally measured 20-f
compression@6,7# of the idler wave in a synchronousl
pumped optical parametric generator, and note the succe
explanation@19# of the compression reported in these work

II. BASIC PROPERTIES OF TWI SOLITONS

A numerical study in Ref.@11# shows that group velocity
dispersion is negligible in most practical cases and we
glect GVD effects. In this regime the three-wave interact
is described by the following system of three equations:

]A1

]z
1

1

v1

]A1

]t
5A3A2 ,

]A2

]z
1

1

v2

]A2

]t
5A3A1 , ~1!

]A3

]z
1

1

v3

]A3

]t
52A1A2 ,

where Aj are normalized amplitudes: Aj

5(Ej /E0)Anjv3 /n3v j , v j are frequencies,v j are group
velocities, andnj are the refractive indexes.E0 here is de-
termined by the relationshipE05An1n2l1l2/(2p)2xnl ,
wherexnl is the nonlinear dielectric susceptibility.

Throughout this paper we assume perfect phase match
i.e.,Dk50. This assumption is not necessary for the analy
in the paper, and is adopted for simplicity and clarity: we c
use the phase transformation in@11# to connect system~1! to
the analogous system withDkÞ0.

We assume that the group velocity of the high frequen
wave,v3 , lies between the group velocities of the other tw
waves, i.e., v1.v3.v2 . In Ref. @16# this is the FSF
~fundamental–sum frequency–fundamental! case. In Ref.
@17# this is the ‘‘soliton-decay’’ case. In the FSF regime bo
fundamental frequencies can contain TWI solitons. In c
trast, if the group velocityv3 of the pump does not lie be
tween the fundamental group velocitiesv1 andv2—we term
this the SFF ~sum frequency–fundamental–fundament!
regime—only the fundamental frequency with the extre
velocity can have TWI solitons. As shown below, this d
tinction between the two regimes plays an important r
when comparing the TWI soliton theory and experimen
data. Throughout this paper we use FSF soliton theory
Sec. IV we show how this theory can be applied to an
perimental SFF interaction.

The termsoliton requires some explanation when appli
to the three-wave interaction. The original definition of so
ton has gradually altered in optics, and at the present mom
most researchers define a soliton as a wave which propag
preserving its shape because of a balance between nonli
ity and dispersion for temporal solitons~between nonlinear-
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ity and diffraction for spatial solitons!. Such waves were
initially called solitary waves, and the term soliton reserv
for solitary waves with a remarkable interaction prope
@20#: A soliton is a solitary wave which asymptotically pr
serves its shape and velocity upon nonlinear interaction w
other solitary waves, or more generally, with another (arb
trary) localized disturbance.

The IST analysis in Refs.@12,13# shows that in the FSF
case (v1.v3.v2) both fundamental frequency waves ha
solitons with sech profiles and specific height to width rat
with this interaction property. These waves with the se
profiles are the fundamental solitons in the TWI theory.
Ref. @11#, the soliton profiles for the TWI system~1! are

Aj~ t,z!5Aj ,0 sechFAj ,0

g j
S t2

z

v j
1d D G , ~2!

wherez is the propagation coordinate,t is time, andd is an
arbitrary time shift;j 51 gives the first fundamental wave
and j 52 the second,A1,0 andA2,0 are the initial amplitudes
of the first and second fundamental pulses, respectively,
the coefficientsg j which prescribe the amplitude/duratio
relationships are

g15An1,2n1,3, g25An1,2n2,3,
~3!

g35An1,3n2,3, with n i , j5U 1

v i
2

1

v j
U.

In Ref. @11# these waves were termed TWI solitons to avo
confusion with and distinguish them from ‘‘normal’’ NLS
solitons.

For the TWI system, each TWI soliton corresponds to
zero in either of the two outer diagonal elements of a 333
scattering matrix. Since the diagonal elements of the sca
ing matrix are the same before and after the interactioni, the
TWI solitons~2! possess the interaction property common
all solitons: they recover their shape after interacting w
another~arbitrarily shaped! fundamental frequency wave. I
fact, for a fundamental TWI soliton the only effect of a
interaction is a delay and possibly a phase change. S
examples of this behavior were given in Ref.@16#.

The ZM scattering problem which underlies the IST f
the TWI equations@12–17# is unwieldy and specialized. Th
ZM scattering problem is an eigenvalue problem for a line
system of three ordinary differential equations, and has
been extensively studied. Fortunately, the scattering prob
for the TWI system~1! simplifies greatly if the three inter
acting waves are initially well separated. In this case, the
scattering problem factors into three~one for each frequency!
simpler ZS scattering problems. The ZS problem is an eig
value problem~described in the Appendixes! for a linear
system of two ordinary differential equations and is the ba
for the IST solution of many nonlinear differential equation
In particular, the ZS scattering problem underlies the soli
theory for the nonlinear Schro¨dinger equation. As a result o
the intense interest in NLS soliton data transmission, the
scattering problem has been extensively studied.

In our treatment of parametric amplification we will a
sume that the signal wave is predelayed, and that the si
enters the crystal sufficiently far behind the pump that
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can use the simpler ZS analysis. Output from numer
simulations quantifying the effect of varying the predel
~and hence overlap! of the signal relative to the pump ar
contained in the Appendixes. The conclusion to be dra
from these numerics is that the signal output from the de
of an intense pump is essentially independent of the exten
the predelay of the small trigger pulse.

This approach reduces the nonlinear interaction within
medium to an algebraic transformation of the input ZS sc
tering data~one for each frequency! to output ZS scattering
data~again one for each frequency!. To complete the analy
sis we need to know how to compute the ZS scattering d
of arbitrarily shaped input pulses and how to recreate
output pulses from their ZS scattering data: this material i
the Appendixes.

The IST analysis@17,20–23# of Eq. ~1! shows that under
rather general conditions~such as the amplitude never cros
ing zero, etc.@17#! any smooth intense pulse at the frequen
v i , well separated from the other two pulses, is almost
tirely composed of TWI solitons. In fact, the normalized ar
of the pulse determines the number of solitons in the en
lope

Ti5
1

g i
E

2`

`

Ai~ t !dt5pni1e i with ue i u,
p

2
~4!

whereAi(t) is the amplitude of thei th wave, the coefficients
g i are given by Eq.~3!, ni is the number of TWI solitons
contained in thei th wave, ande i is the nonsoliton or radia
tion portion of thei th wave. Equation~4! implies that pulses
with Ti.p/2 must contain TWI solitons, and that inten
pulses (Ti@p) are almost entirely composed of TWI sol
tons.

Each TWI soliton is described by two numbers:h ~which
we term the soliton amplitude! and D ~which we term the
nonlinear phase!. All three waves may have multiple TW
solitons: when necessary we use two subscriptsh i , j andDi , j
on soliton parameters. The first index indicates the wave
which the soliton belongs:i 51 is the signal,i 52 is the
idler, andi 53 is the high-frequency pump. The second
dex identifies the soliton within the wave. For example,h2,4
is the amplitude of the fourth soliton in the idler envelop
Where it will not cause confusion~and the argument applie
to all the envelopes!, we drop the subscript identifying th
wave to which the soliton belongs.

The three-wave interaction is nonlinear, and a pulse co
posed ofn TWI solitons is not obtained by merely summin
the single solitons@Eq. ~2!#. When the pulses are separat
the pulse profile is reconstructed using the ZSn-soliton for-
mula @17#

Q~ t !52 (
j ,k51

n

D j exp@2~h j1hk!t#~ I 1N2! j ,k
21, ~5!

wheren is the number of solitons in the pulse; the solit
amplitudes areh1 ,h2 ,...,hn , which we will collectively re-
fer to as the nonlinear spectrum; the nonlinear phases
D1 ,D2 ,...,Dn ; I is the identity matrix; the negative powe
denotes the matrix inverse; and the matrixN is
l
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Nk, j5
D j exp@2~hk1h j !t#

hk1h j
. ~6!

The terminology spectrum and phases are deliberately c
sen to highlight the analogy between the IST and the lin
Fourier transform described below. Expressions~5! and ~6!
show that the multisoliton profiles have a scaling behav
similar to single solitons~2!: if Q(t) is an n-soliton profile
with soliton amplitudes h1 ,h2 ,...,hn and phases
D1 ,D2 ,...,Dn then the scaled pulsebQ(t/b) is ann-soliton
pulse with soliton amplitudesbh1 ,bh2 ,...,bhn and nonlin-
ear phasesbD1 ,bD2 ,...,bDn .

Since the ZS scattering problem describes the soliton
all three envelopes, the nonlinear superposition formula
similar for all three waves. Substituting the soliton spectru
h i ,1 ,h i ,2 ,...,h i ,n and nonlinear phasesDi ,1 ,Di ,2 ,...,Di ,n for
the i th pulse into Eq.~5! to obtainQi(t) and scaling gives
the amplitude for thei th pulse:

Ai~ t !5g iQi~ t !. ~7!

Each wave will, in general, have a different number of so
tons with different soliton amplitudes and nonlinear phas
The signal (i 51) pulse isg1Q(t), whereQ(t) is determined
by Eq. ~5! using the soliton amplitudes and nonlinear pha
of the signal pulse. The number, amplitudes, and nonlin
phases of the solitons in the idler (i 52) pulse will not, in
general, be the same as those in the signal pulse: the sha
the idler (i 52) pulse isg2Q2(t), whereQ2(t) is determined
by Eq. ~5! using the solitons in theidler pulse.

The nonlinear phasesD1 ,D2 ,...,Dn appearing in expres
sions~5! and ~6! for Q(t) have a simple physical meaning
they determine the positions of then TWI solitons in the
pulse. In the simple case with only a single soliton in thei th
pulse with amplitudeh i ,1 and nonlinear phaseDi ,1 , Eqs.~5!
and ~6! give

Ai ,1~ t !5sgn~Di ,1!g i2h1,i sech@2h i ,1~ t2t i ,1!#

with t i ,15
ln~ uDi ,1u/2h i ,1!

2h i ,1
, ~8!

and the quantityt i ,1 gives the location of the peak of th
single soliton. For a single TWI soliton the soliton coord
natet is a natural parameter since it gives the location of
peak. However,t does not determine the sign of the pul
and the nonlinear phaseD which provides a complete de
scription is the natural quantity to compute in the scatter
problem.@Note that the peak amplitude of a single TWI so
ton ~8! in the i th envelope is 2g ih, whereh is the ‘‘ampli-
tude’’ of the TWI soliton.#

We write

tk5
ln~ uDku/2hk!

2hk
. ~9!

For a single soliton, or when solitons are far apart from ea
other,tk approximates the position of the center of the c
responding soliton. However, this simple interpretation
the phases is only valid when the solitons are well separa
The solitons interact strongly when they are nearby, an
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does not make sense to assign positions to individual soli
within a group. However, the notion of the soliton coord
natest1 ,t2 ,...,tn defined by Eq.~9! is very useful. In fact,
shifting all the soliton positions by the same amountt0 shifts
the entire pulse byt0 : in terms of the nonlinear phase
D1 ,D2 ,...,Dn this means that Eq.~9!, multiplying each of
the soliton phasesDk in a pulse by exp@2hk t0#, produces an
identical pulse time shifted byt0 .

The superposition ofn solitons~or annth-order soliton! is
symmetric@24# if

Dk562hk)
j 51
j Þk

n
hk1h j

hk2h j
. ~10!

Multisoliton superpositions can exhibit a wide range of co
plicated wave forms. The most important in practical app
cations are bell-shaped sech pulses. The combination@22# of
n solitons with amplitude ratios1:3:5:...2n11, i.e.,

h j5
2~n2 j !11

2n21
h1 for 1< j <n, ~11!

and the phases given by Eq.~10!, with all positive signs, has
a sech shape with amplitude

h12h21h32¯5h1

2n

2n21
. ~12!

Selecting the largest soliton to have amplitudeh15(n
21/2) andh15121/(2n) gives the useful amplitude distri
butions

Q~ t !5n sech@~ t2t!#,
~13!

Q~ t !5sech@1/n~ t2t!#.

For n51, Eq. ~13! is a fundamental soliton~first-order soli-
ton! with the soliton amplitudeh15 1

2 . For integersn.1,
Eq. ~13! describes the decomposition of sech pulses~eithern
times longer orn times more intense than the fundamen
soliton! into their constituent solitons. Ifn is not an integer,
then profiles of form~13! are not puren-soliton profiles but
contain eitherm or m11 ~wherem is the largest integer les
thann! TWI solitons and some radiation.

Merely changing the signs of the soliton phasing in t
input pulse gives a 25-fold intensity compression for a fif
order soliton sech pulse. The intensity compression~obtained
by changing all positive phases to alternating phases! for the
nth-order soliton sech pulse isn2. However, the secondar
extrema in the compressed pulses can contain a signifi
portion of the pulse energy: in Fig. 1 the central peak
curvea contains'80% of the total pulse energy, while th
secondary and tertiary peaks bear'13% and 6%, respec
tively, of the energy of the central peak. The duration of
central peak of curvea in Fig. 1 is ' 1

20th that of the sech
pulse~curveb!.

Another approach to soliton compression in the TWI
suggested by curvec in Fig. 1. This curve is the profile of the
largest soliton contained in the fifth-order soliton pul
~curve b!: the amplitude is 1.8 times that of curveb; the
ns

-
-

l

-

nt
f

e

duration is 1
9 times that of curveb, and it contains exactly

36% of the energy of curveb. Physically, within a long sech
pulse there is always a soliton that has almost twice the
plitude of ~and is substantially shorter! than the long sech
pulse. In this example, if the largest soliton in the long se
pulse can be separated from the other solitons, then
achieve a compression ratio of 9 and a clean intensity dis
bution, and retain 36% of the energy in the compres
pulse.

The synchronously pumped optical parametric oscilla
experiments@6,7# report a compression ratio of 20. Repea
ing the computation above shows that for a compression
tio of 20 the central soliton contains 20% of the initial e
ergy. We believe that this is the type of compressi
observed in Refs.@6,7#.

III. SOLITON SOLUTIONS:
SOLITONS IN THE THIRD ENVELOPE

AND NONLINEAR FOURIER TRANSFORM

In many ways, solving a nonlinear equation using an I
is analogous to solving the wave equation using the Fou
transform @20–23#. To solve a linear differential equatio
using the Fourier transform, one first decomposes an a
trary initial wave into a superposition of simple plane wave
These plane waves do not change during the propaga
and so the spectrum is constant: only the phases of the p
waves change during the propagation. To complete the s
tion to the propagation problem, one computes the n
phases from a simple evolution equation, and assembles
solution from the plane waves with their new phases.

Analogous to the linear Fourier transform, in the nonli
ear case each of the three nonoverlapping input pu
@Ai ,0(t), where i 51, 2, and 3, respectively, are the initia
signal, the idler, and the high-frequency pump# can be rep-
resented as anonlinearsuperposition ofni solitons with dif-
ferent amplitudesh i ,k for 1<k<ni ~which, to emphasize the
analogy with the linear Fourier transform, we refer to as
‘‘soliton spectrum’’! with associated nonlinear phasesDi ,k
and some residual radiation. As in the linear case, the s
tons ~in the linear case spectrum! do not change during the
interaction; however, their phases do. To find the shape
the waves after the nonlinear interaction, one needs to c
struct the final envelopes, using the same solitons, but w

FIG. 1. Possible compression for a five-TWI-soliton sech p
file: curve a is the amplitudeA of an alternating phase symmetr
five-soliton profile;b is the amplitudeA of a sech profile with the
same soliton content asa; and c is the amplitudeA of the largest
soliton in b.
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6126 PRE 59E. IBRAGIMOV et al.
the new phases which the solitons have acquired during
nonlinear interaction.

Suppose that initially there is only an intense pump an
small signal wave with the highest speedv1 , i.e., the idler
wave with speedv2 is absent before the interaction. This
similar to parametric amplification when at the start of t
interaction a small trigger pulse~signal wave! at frequency
v1 is behind an intense pump pulse at frequencyv35v1
1v2 , and during the interaction the signal overtakes
pump. Any time the high-frequency pump contains a solit
it is unstable. When each pump soliton decays, it emits
actly one soliton into each daughter wave. Thus each sol
in the pump can be thought of as a bound state of z
binding energy, consisting of a signal and an idler solit
with perfectly matched energies: the matching is exactly t
prescribed by the Manley-Rowe relations. The interaction
an intense pump with a small trigger pulse breaks the per
energy balance and initiates the decoupling into idler a
signal waves@12,13#. During the interaction, all solitons in
the pump split and move to the idler and signal wav
@12,13#: the number of solitons in each fundamental equ
the number of solitons initially in the pump. However, th
phases of each soliton will be changed by the interaction.
obtain analytical expressions for the final phases using
approach developed in Ref.@17#.

When a solitonh3,k in the third envelope splits, it pro
duces two low-frequency solitons: one with amplitudeh1,k in
the first envelope and one with amplitudeh2,k in the second
envelope with

h1,k5a1h3,k and h2,k5a2h3,k , ~14!

where the scalingsa1 anda2 are

a15
n3,2

n2,1
and a25

n3,1

n2,1
. ~15!

If the n pump solitons areh3,k for 1<k<n, then the signal
and idler solitons areh1,k5a1h3,k andh2,k5a2h3,k , respec-
tively, for 1<k<n. The nonlinear phases of the output so
tons can be computed from an algebraic expressions for
output scattering matrix. Once the nonlinear phases
known the dominant soliton portion of the output is read
computed from the nonlinear superposition@Eqs. ~5! and
~6!#.

As Eq.~4! shows, an intense pulse withTi@p/2 is essen-
tially composed of TWI solitons sincee i!Ti . We neglect
the radiation~nonsoliton! part of the pump, and assume th
the pump consists entirely of TWI solitons. Figure 2 sho
representative output from the decay of a 4 sech(t) pump
with a small trigger pulse: for case 1 the trigger
0.05 exp(2t2), while for case 2 the trigger is 0.002
exp(2t2). The features to note are that the four solitons@Eq.
~13!# contained in the 4 sech(t) pulse have split according t
Eq. ~14!, and are clearly visible in both the signal and idl
output; the phases in the signal output alternate; the phas
the idler output do not alternate; the most intense soliton i
the lead in both pulses; and smaller trigger pulses incre
the separation of the output solitons. The IST theory give
very clear explanation of this behavior. In Ref.@25# we gave
an analytical formula describing the behavior of the sig
he
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wave. Here we complete the investigation by including t
expressions for the idler. The derivation of the analytic
expressions is in the Appendixes.

The following expressions for the final phases of the fi
~signal! and second~idler! solitons in terms of the initial
parameters explain the behavior in Fig. 2:

D1,k
~ f !5r1~h3,k!2a1h3,k)

j 51
j Þk

n
h3,k1h3,j

h3,k2h3,j
expF2h1,k

v1
zG ,

~16!

D2,k
~ f !5r1~h3,k!a2D3,k

~ i ! expF2h2,k

v2
zG , ~17!

whereD3,k
( i ) are initial phases in the pump,D1,k

( f ) andD2,k
( f ) are

final soliton phases in the signal and the idler waves, a
h3,1,h3,2,...,h3,k are the initial pump solitons; the paramete
a1 anda2 are defined in Eq.~15!, andr1 is the ZS reflection
coefficient of the first~signal! wave. As shown in the Appen
dixes, if the initial signal pulseA1,0(t) is small, then

r1~h!.
1

g1
E

2`

`

A1,0~ t !exp~22a1ht !dt. ~18!

When using Eq.~16!, one should bear in mind that due to th
way this expression was obtained~see the Appendixes!, the
phasesD1,k

( f ) define the final shape of the time reversal of t
signal pulse.

Expressions~16! and ~17! show a dramatic difference in
the behavior of the signal and idler waves. The final sig
phasesD1,k

( f ) depend only on the initial soliton content of th
pump, anddo notdepend on the initial nonlinear phases
the pump solitons. This is very surprising: in general o
would expect the output shape of the signal wave to invo
both soliton amplitudesh3,k and nonlinear phasesD3,k

( i ) . A
linear analogy to this would be if the propagation of a be
did not depend on the initial shape of its wave front. For t
nonlinear case, the fact that Eq.~16! does not involve the
initial nonlinear phasesD3,k

( i ) but only the soliton amplitudes

FIG. 2. Signal and idler amplitudes (A1 andA2) output from the
decay of a four-TWI-soliton@4 sech(t)# pulse: signal and idler 1 are
the output with trigger 0.0025 exp(2t2); signal and idler 2~multi-
plied by 21 to make the figure clearer! are the output with trigger
0.05 exp(2t2).
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h3,k means that the output shape of the signal wave pra
cally does not depend on the initial shape of the pump.

In contrast, the initial phasesD3,k
( i ) do appear in expressio

~17! for the final D2,k
( f ) idler soliton phases, and the idle

output depends on the initial profiles of the intense pu
~through the initial soliton phases! as well as the reflection
coefficientr(h3,k) ~or radiation spectrum at the pointsh3,k)
of the small trigger.

The final shape of the signal depends critically on
product

Ck5)
j 51
j Þk

n
h3,k1h3,j

h3,k2h3,j
, ~19!

which determines the signs of the solitons in Eq.~16!. There
is no loss of generality in assuming the solitons are orde
i.e.,h3,k>h3,k11 , which ensuresC1.0, C2,0, C3.0, etc.
It is these alternating signs that give the output signal pu
the characteristic profile of a decaying parade of oscillat
humps, which can be seen in Fig. 2. In contrast, the ou
idler soliton phases@Eq. ~16!# are determined by the initia
pump soliton phasesD3,k . If the soliton phases in the pum
are initially positive~which is the case for the sech pum
pulse in Fig. 2!, then the output idler phase will also b
positive ~as is shown in Fig. 2!.

The exponential factors in Eqs.~16! and ~17! have no
influence on the output pulse shapes. As discussed ab
these exponential factors correspond to uniform translat
of the output pulses. In fact, they show that the solitons
Eqs.~16! and ~17! move with velocitiesv1 andv2 , respec-
tively. Calculating the soliton coordinates~9!—dividing Eq.
~16! by twice the soliton amplitude, taking logarithms, a
dividing again—gives the soliton ‘‘coordinates’’ of the ou
put signal and idler solitons (t1,k

( f ) andt2,k
( f ) , respectively!

t1,k
~ f !5

z

v1
1

ln r1~h3,k!

2h1,k
1

ln~Ck!

2h1,k
, ~20!

t2,k
~ f !5

z

v2
1

ln r1~h3,k!

2h2,k
1

t3,k
~ i !

a2
. ~21!

The first terms in Eqs.~20! and~21! arise from the exponen
tial factors in Eqs.~16! and~17!, and show that all the outpu
TWI solitons move with the same speed (v1 for the signal,
andv2 for the idler!. The second term shows how the trigg
pulse profileA1,0 effects each soliton in the pump throug
the reflection coefficientr1 . When the reflection coefficien
is small, the solitons in the signal wave experience large t
delays and the solitons in the idler are advanced. Small s
tons, corresponding to smallhk , experience larger time
shifts and will be delayed or advanced more by the nonlin
interaction: therefore, the generic output signal wave is
ordered train of TWI solitons, as illustrated in Fig. 2. Smal
initial amplitudes of the signal wave produce bigger tim
shifts. Figure 2 shows the output for two different input s
nal intensities: in agreement with theory, the smaller sig
input produces longer delays and increased separation o
output solitons.@Note that Eqs.~16! and~20! give the phases
and coordinates of the time-reversed signal output.# The third
terms, determined entirely by the pump, show the effec
ti-
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the other TWI solitons in the pulse: for the signal wave th
term is independent of the coordinatest3,k

( i ) of the input pump
pulse. For the idler this term is a scaled copy of the coor
nates t3,k

( i ) . For small trigger pulses, the terms involvin
r(h3,k) are dominant in Eqs.~20! and ~21! and the third
terms are negligible. This shows that for small triggers
time shift increases as the soliton amplitude decreases w
explains the ordering of the solitons in Fig. 2.

Numerics on system~1!, illustrating the analytical predic-
tions, are contained in Figs. 3 and 4. Figure 3 shows a sin
trigger pulse with four different pump pulses: all four pum
pulses are pure two-soliton profiles withh152.7 andh2
51, but with different soliton phases. Equations~16! and
~17! predict that the signal output of this trigger pulse wi
these three different pump profiles should be identical. F
ure 4 shows the numerical signal and idler output: the sig
output is the same for the four different pumps, while t
idler essentially repeats the pump profile. In practice,
course, pulses will never have exact soliton profiles, a
there will always be small amounts of radiation. Addition
numerics illustrating the stability of the soliton behavior a
in Ref. @25#.

FIG. 3. Initial amplitudes for numerical verification. The puls
~t! is the fundamental trigger pulse whilep1 –p4 are pump profiles.
All four pump pulses have the same soliton amplitudes (h152.7
andh251); they differ in their soliton phases.

FIG. 4. Signal and idler output amplitude from numerical ve
fication. The pulse~s! is the common signal output predicted an
lytically ~the outputs from all four processes are indistinguishab!.
The pulsesi1 –i4 are the idler outputs that for the particular choi
of trigger with r̄(2.7)5 r̃(1.0)51 should reproduce the input pum
profilesp1 –p4 in Fig. 3: the slight deviations are due to the use
the approximate expression forr.
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Expressions~16!–~21! show that the shape of the trigge
pulse controls the position of the output solitons in the sig
and idler waves. In Ref.@25# we showed that for smal
Gaussian triggers the solitons emerge ordered by ampli
in increasing order. In this paper we extend this analysis
show how to adjust the positions of the output solitons
changing the shape of the input trigger pulse.

If the parameterr3,k in Eqs. ~20! and ~21! is near zero,
then thekth soliton in the signal or idler waves experienc
an extreme time shift during the interaction. Since the
rameterr3,k is determined by the initial signal profile, on
can control the positions of the output solitons by altering
shape of the signal trigger. It is possible to isolate the larg
soliton by selecting triggers which delay the other sma
solitons. Ifr(h3,k)51 @or, more generally,r5exp(qh1,k) for
someq# for all pump TWI solitons, then the output sign
phases@Eq. ~16!# satisfy Eq.~10!, with alternating phases
while the output idler phases are a scaled copy of the in
phases: in this case the signal output is the symmetric pr
with alternating soliton phases and the idler output repe
the pump profile. The alternating phases superposition
vides the maximum intensity and compression of the pu
However, these profiles have satellite peaks containin
substantial fraction of the energy. Note that the idler out
repeats the pump profile when the signal output is the m
mal amplitude symmetric profile. Figures 5–7 show some
the possibilities for controlling the shape of the outp
pulses. Figure 5 shows four different trigger profiles: (t1) is
0.2 exp(2t2), which is included to show the typical effect o
a moderate trigger; (t2) is (0.450t – 0.112t)exp(2t2), which

FIG. 5. Trigger signal amplitude input for a numerical demo
stration of the control of soliton positions. The pump for all fo
trigger pulses is a two-soliton 2 sech(t) profile.

FIG. 6. Signal amplitude output from triggers 1 and 2 in Fig. 5
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is designed to delay the emission of the small soliton; (t3) is
(0.556t – 0.742t)exp(2t2), which is designed to delay th
emission of the large soliton; and (t4) is
(0.631t – 0.706t)exp(2t2), which is designed to produc
symmetric peak compression output for the idler and sim
taneously reproduce the signal profile.

Figures 6 and 7 show the signal output from the decay
the 2 sech(t) pulse „a symmetric two-soliton profile@Eq.
~13!# containing solitons with amplitudes32 and 1

2… with the
four triggers in Fig. 5. The idler outputs are pure two-solit
pulses. The signal radiation~from the trigger! is visible at the
rear of the fourth pulse in the signal output. The Gauss
pulse (t1) produces a generic output with the two solito
fairly close together. Trigger (t2) which was chosen to mak
r(0.5).0 by setting approximation~18! equal to zero, pro-
duces, as predicted by Eq.~20!, a substantial delay of the
small h250.5 soliton and results in substantial separat
between the output solitons. Trigger (t3) which was chosen
to maker(1.5).0 by setting approximation~18! equal to
zero, delays, as predicted by Eq.~20!, the largeh3,151.5
soliton. Trigger (t4), which was chosen to maker(0.5)
.exp(20.5) andr(1.5).exp(21.5), produces, as predicte
by Eqs.~16! and ~17!, symmetric output for both the signa
and idler, with the idler repeating the pump profile and t
signal showing maximal compression with alternating pha
between the solitons.

Delaying the second soliton~Fig. 6, curve 2! generates a
single, clean-profile, compressed soliton pulse from a mu
soliton pulse. If the process is stopped after only the larg
soliton is formed, the output pulse will have a clean se
profile with the duration~much less than the pump duratio
for an intense pump! of the largest pump soliton. For th
two-soliton 2 sech(t) pulse, the output signal duration is&/3
that of the pump. The effect is more dramatic for pum
containing more solitons: for then-soliton n sech(t) pulse,
the duration of the pulse obtained by isolating the larg
soliton @Eq. ~13!# is&/(2n21) times that of the pump. In
this case the fraction of the pump energy contained in
smaller TWI solitons is lost. For stronger compressions m
energy is lost. Nevertheless, the energy of the largest pu
TWI soliton is considerable. For example, 20-fold compre
sion is possible with an energy conversion of 20%. T
matter is discussed in detail in Sec. IV.

Another compression possibility is to generate symme
distribution~10! by making the reflection coefficientr(h3,k)

-

FIG. 7. Signal amplitude output from triggers 3 and 4 in Fig. 5
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PRE 59 6129THREE-WAVE INTERACTION SOLITONS IN OPTICAL . . .
equal to 1 simultaneously for all the pump solitons to p
duce the peak soliton interaction~Figs. 5 and 7, curves 4!.
This generates stronger compression at the cost of sat
pulses. For the two-soliton 2 sech(t) pulse in Fig. 7 (s4), the
output signal amplitude is about three times greater than
of the pump. The effect is more dramatic for pumps conta
ing more solitons: for then-soliton n sech(t) pulse, the am-
plitude compression by creating the optimal alternat
phases@Eq. ~10!# is close ton times with a very short dura
tion. Although energy conversion is high in this second ty
of compression, the appearance of satellite pulses is a m
drawback.

IV. EXPERIMENTAL OBSERVATION
OF TWI-SOLITON BEHAVIOR

In this section we compare predictions of the TWI-solit
theory with the experimental results observed in Refs.@6,7#
for an experimental synchronously pumped optical param
ric oscillator~SPOPO!. Dispersion is extremely small in thi
SPOPO, and the observed soliton behavior cannot be at
uted to the well-known cascaded quadratic nonlinea
(x (2)3x (2)) soliton like waves which can appear only
strongly dispersive quadratic media.

There is difference between the notation of the pres
paper and Refs.@6,7#. The present paper considers param
ric amplification which corresponds to the steady-state
gime in the SPOPO. In the theoretical section of this pa
the ‘‘signal’’ refers to the trigger wave initially present be
fore the interaction. In Refs.@6,7#, the signal wave refers to
the highest frequency~and intermediate speed! fundamental
wave. To avoid confusion we will continue to refer to th
fastest fundamental wave as the signal.

The experimental SPOPO@6,7# consists of a transvers
walk-off compensated two-barium-borate~BBO! crystal con-
figuration pumped by the third harmonic~355 nm! of a
pulsed Nd:YAG~yttrium aluminum garnet! laser. The third
harmonic pump consist of approximately 60311-ps pulses
with the energy of a single pulse up to 50mJ. The 0.7-mm
pump-beam diameter within the crystals gives virtually
tally overlapped propagation of the pump and oscillating
diation along both crystals. The SPOPO oscillates at frequ
cies from 400 to 2300 nm. The balance of each round
between losses at the optical elements and the nonlinea
teraction with a fresh pump pulse determine the output of
SPOPO. The time delay between the oscillating pulse
individual pump pulses at the input of the first crystal
determined by the SPOPO cavity round-trip time. This tim
delay is controlled by cavity length detuning (DL) from the
length at which the energy threshold for oscillation is a mi
mum. WhenDL.0 the SPOPO cavity round-trip time i
greater than the interval between pump pulses, and the o
lating pulse enters the crystal behind the pump every ro
trip. A schematic of the experimental setup is shown in F
8. The main results of the experiment are the following.

~i! Compression~up to 20-fold! is due to the pronounce
group-velocity mismatchof the pump and oscillating wave i
the nonlinear crystal. The compressed pulses exhibitsoliton-
like behavior: the signal~fastest! rapidly reaches a stead
state with stable pulses. Second-order dispersion eff
~GVD! did not have substantial influence on process.
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~ii ! Compression takes place only when the SPOPO
well above threshold. The duration of the compressed w
decreases as thepump intensity increases.

~iii ! Only the fasterof the signal and idler pulses can b
compressed.~In Refs.@6,7#, the fastest wave was referred
as the ‘‘idler’’; in this paper the fastest wave is the ‘‘sig
nal.’’!

~iv! At a high pump level, a number of pulses are gen
ated in the signal envelope.

As shown below, these observed phenomena are sur
ingly well matched with the TWI-soliton theory of OPG pro
cesses. The general three-wave interaction theory@12–17#
identifies two distinct regimes depending on whether
group velocity of the high frequency pump does or does
lie between the speeds of the idler and signal. The regim
are FSF, when the high-frequency group velocity is betwe
the velocities of the signal and idler; and SFF, when
pump group velocity isnot between the velocities of the
signal and idler.

The behavior of the intermediate wave in the SFF regi
for parametric generation is very interesting. Extensive
merical calculations show that it generally~except for ex-
treme cases when the speeds of the interacting waves
very close to each other! emerges as a single hump with
very clean profile. We cannot explain this behavior analy
cally now: this case requires further development of the I
theory. Extending the theory to this case would be very
teresting for two reasons. The first reason is that in norm
dispersive nonlinear media the intermediate speed wav
the higher frequency output pulse, and compression of
envelope would give a high-frequency tunable radiat
source. The second reason is the very clean temporal pr
of the intermediate speed pulse particularly the absence
tail.

The experiment@6,7# is in the SFF regime, since the ex
perimental conditions (l350.53mm, l250.48mm, andl3
51.3mm) in BBO give—all optical data is from Ref.@26#—
group velocities of v351.6731010cm/sec, v251.7
31010cm/sec, andv151.7831010cm/sec. In the SFF re
gime TWI-soliton theory predicts that only the fastest~sig-
nal! envelope can contain TWI solitons: so in the experim
TWI-soliton compression is only possible for the faste
wave. This theoretical prediction agrees very well with t
experimental data, where no compression was observed
the intermediate speed wave. Such a clear indication of
distinction between the two waves predicted by theory, a
observed in experiment is a strong argument for the sol
nature of the parametric compression. However, a rigor

FIG. 8. Schematic of experiment.
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6130 PRE 59E. IBRAGIMOV et al.
analysis of the experiment requires the complete anal
theory for the SFF regime: unfortunately this theory is not
advanced as FSF theory. We anticipate future theoretica
vances will provide the analytical tools to complete an ex
quantitative picture of the SFF process.

Here we attempt to explain the SFF process qualitativ
using the well-developed FSF theory. Our qualitative d
scription is based on the numerically observed fact that
behavior of the fastest wave~which can carry TWI solitons!
in the SFF regime is surprisingly close to the behavior of
fastest wave in an associated FSF regime: the FSF reg
‘‘corresponding’’ to a SFF regime is obtained by interchan
ing the group velocities of the idler and the pump. Numeri
calculations show that the output shape of the fastest~signal!

FIG. 9. Comparison of the signal and idler amplitude outp
from the decay of a 2 sech(t/4) pump in different velocity regimes
Signal and idler 1 are the SFF case. Signal and idler 2 are the
soliton decay case. In both cases the pump is 2 sech(t/4), the trigger
is 0.05 sech(t), and the frame of reference is moving at the avera
of the extreme velocities. Note the marked qualitative similarity
the leftmost portion of the signal curves.
ic
s
d-
t

ly
-
e

e
e

-
l

wave are very close for these two cases. In fact, when
initial shape of the pump is Gaussian, the output shape of
fastest wave is always the sequence of decreasing-amplit
oscillating humps predicted by the rigorous FSF theory. T
area of the first hump~which is the largest soliton in the FS
case but isnot a soliton in the SFF case! is within a few
percent ofp in the SFF case. However, the following puls
have areas considerably smaller than the ‘‘soliton area’’
p. The height and duration of the leading pulse are also v
close for the corresponding SFF and FSF cases. The be
ior of the slower~idler! wave is completely different for the
SFF and FSF cases.

Figure 9 compares numerical simulations of parame
amplification in the FSF and SFF regimes: signal 1 and id
1 are from the experimental SFF parametersv351.67
31010, v251.7131010, and v151.7831010; signal 2 and
idler 2 are from the FSF parameters obtained by intercha
ing v2 and v3 , i.e., v251.6731010, v351.7131010, and
v151.7831010. Note that the signal pulses~particularly the
most intense lefthand portions! are similar in both cases, an
that idler 1~as predicted by theory! does not have the distin
guishing solitons characteristics of idler 2.

This analogy between the behavior of the fastest wa
for the SFF and associated FSF regimes allows us to gi
qualitative explanation of the behavior of the fastest wave
the SFF case by using the FSF theory. In the remainde
this section we describe the behavior of the fastest~signal!
wave by considering the corresponding FSF regime,
tained by switching the idler and pump group velocitie
Tables I and II summarize the soliton content of sech pro
pump pulses for the corresponding FSF regime in which
pump wave contains solitons. In the FSF case these p
solitons split and emerge according to the theory develo
earlier in this paper: the lead pulses in the SFF and FSF c
are qualitatively similar. The similarity between the two FS

t
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ing the
TABLE I. Soliton content ofn sech(t) pump pulses~FSF regime!. The first three columns contain the peak amplitude, width, full wid
at half maximum of intensity~FWHMI!, and soliton content@Eq. ~13!# of ann sech(t) pump pulse. The next two columns contain the pe
amplitude and width~FWHMI! of the largest soliton in the pump; the adjacent columns contain the compression obtained by isolat
largest soliton and the percent of the pump energy it contains. The last column is the amplitude~twice the sum of the solitons! of the pulse
formed from the same solitons with symmetric alternating phases@Eq. ~10!#.

n

n sech(t)
pump

Largest
soliton Alternating

phases
Amp.Amp. Width h’s Amp. Width Comp. Energy %

1 1 1.762
1

2
1 1.762 1 100 1

2 2 1.762
1

2
,
3

2
3 0.587 3 75 4

3 3 1.762
1

2
,
3

2
,
5

2
5 0.3 52 5 56 9

4 4 1.762
1

2
,
3

2
,
5

2
,
7

2
7 0.652 7 44 16

5 5 1.762
1

2
,
3

2
,
5

2
,
7

2
,
9

2
9 0.696 9 36 25

n n 1.762
1

2
,
3

2
,...,n2

1

2
2n21

1.762

~2 n21!
2n21 100S 2

n
2

1

n2D n2
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TABLE II. Soliton content of sech(t/n) pump pulses~FSF regime!. The first three columns contain the peak amplitude, width~FWHMI!,
and soliton content@Eq. ~13!# of an n sech(t) pump pulse. The next two columns contain the peak amplitude and width~FWHMI! of the
largest soliton in the pump: the adjacent columns contain the compression obtained by isolating the largest soliton and the perc
pump energy it contains. The last column is the amplitude~twice the sum of the solitons! of the pulse formed from the same solitons wi
symmetric alternating phases@Eq. ~10!#.

n

sech(t/n)
pump

Largest
soliton Alternating

phases
Amp.Amp. Width h’s Amp. Width Comp. Energy %

1 1 1.762
1

2
1 1.762 1 100 1

2 1 3.524
1

4
,
3

4

3

2
1.175 3 75 2

3 1 5.286
1

6
,
3

6
,
5

6

5

3
1.057 5 56 3

4 1 7.048
1

8
,
3

8
,
5

8
,
7

8
7/4 1.007 7 44 4

5 1 8.810
1

10
,

3

10
,

5

10
,

7

10
,

9

10
9/5 0.979 9 36 5

n 1 1.762n
1

2n
,

3

2n
,..,12

1

2n
22

1

n

1.762n

~2n21!
2n21 100S 2

n
2

1
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and SFF fastest waves in Fig. 9 is due toquasisolitonbehav-
ior. Qualitatively, the analogy is explained by the area th
rem ~4!, which ensures that any wave which can cont
TWI solitons~such as the fastest wave in the SFF case! does
contain solitons if it has normalized area exceedingp/2. In
the SFF case the fastest wave had no solitons before
interaction~it was small!, and since it can gain no soliton
from the pump~in the SFF case the pump has no solitons! it
must have no solitons after the interaction and must cha
phase to avoid violating the area theorem. Although the
merics show striking analogies between the behavior of
fastest waves in the SFF and FSF regimes, many feature
the SFF regime are unknown. Future rigorous investigat
using IST theory, may reveal many unknown features of
SFF process. In fact, preliminary analytical consideration
the SFF regime shows that the pump will have TWI solito
if the signal and the pump waves significantly overlap at
start of the interaction. However, the rigorous theory for
SFF case is beyond the scope of this paper.

The FSF theory developed in this paper shows that p
metric amplification of small signal pulses is extreme
stable with respect to trigger pulse intensity. The TW
soliton explanation of this stability is simple: the paramet
process output is a train of TWI solitons determined by
number and size of the TWI solitons contained initially
the pump. Varying the trigger pulse intensity changes
time-delays between the emerging TWI solitons but does
change the general shape of the output signal and id
Moreover, expressions~20! and~21! predict a slow logarith-
mic dependence of the time delay on trigger intensity. Ev
large variations of the trigger pulse intensity produce o
small changes in the output: in Fig. 2, increasing the trig
intensity by a factor of 400 produces only minor changes
the output train of five TWI solitons. Combined with th
stability of the process with respect to the pump shape,
cussed in the previous sections, this feature makes T
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soliton parametric amplification extremely stable. The FS
SFF analogy suggests that the development of steady-
pulses and insensitivity to losses observed in the experim
were a SFF analogy of this FSF TWI-soliton stability. Inc
dentally, the parametric decay process does not possess
stability when when none of the waves can contain T
solitons. In the nonsoliton quasistationary (v15v25v3) re-
gime, the process output is extremely sensitive to sm
variations in the trigger pulse.

There are two main soliton compression mechanisms
parametric amplification. Maximal compression is achiev
if after the interaction the output TWI solitons have altern
ing sign ‘‘symmetric’’ @Eq. ~10!# phases: the parametric de
cay produces such output@Eq. ~16!# if the trigger pulse gives
r(hk)51 for all the pump TWI solitons@or, more generally,
r(hk)5exp(qhk) for an arbitrary real constantq#. Figure 5
(t4) shows a trigger that does this for a two soliton pul
curve (s4) in Fig. 7 shows the maximally compressed sign
output while the idler duplicating the pump profile. Tables
and II give compressions for sech profile pump pulses.

The second type of parametric amplification compress
is to isolate the dominant pump soliton. As shown by E
~16! and ~17! or ~20! and ~21! for small triggers, the larges
soliton is the first to emerge. Figures 2 and 9 show the ou
of the nonlinear process when the interaction length is v
long. In practice, the nonlinear interaction is interrupted lo
before all the pump solitons emerge. For an intense pu
pulse containing many TWI solitons the output signal pu
is a single, substantially compressed, clean TWI soliton if
length of the nonlinear medium is chosen so that only
first soliton forms. Longer or more intense pumps gi
higher compression. Tables I and II also give the compr
sion values and the energy efficiency coefficients for s
profile pumps. These tables give the soliton parameter
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TABLE III. Parameters for comparison of theory and experiment.

Phase matching Idler Signal Pump
angle~degrees! l1 mm v1 cm/sec l2 mm v2 cm/sec l3 mm v3 cm/sec

Case 1 27 1.80 1.7831010 0.43 1.7031010 0.35 1.6731010

Case 2 30 1.30 1.7931010 0.47 1.7231010 0.35 1.6831010
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the largest TWI soliton contained in pump. After this solito
moves to the signal wave its amplitude must be normali
according to relationships~14! and~15! and then~2! and~3!.
This normalization is important and in extreme cases
substantially alter the results. However, in the general c
when the speeds of the three waves are well separa
Tables I and II give a good idea about the compression
rameters.

A very attractive feature of compressing pulse by isol
ing the largest soliton is that the compression appears n
rally: for small Gaussian trigger pulses Eqs.~16! and ~17!
show that the largest TWI soliton always emerges first.
practice, however, it is difficult to stop the interaction
exactly the right moment, and a second and even a third T
soliton may also form: although this increases the proc
efficiency, it spoils the shape of the compressed pulse.
obtain cleaner output pulses, one should use less intense
ger pulses by introducing losses into the resonator: la
losses in the resonator decrease the intensity of the tri
pulses and increase the separation of the output solitons
ducing cleaner output. This behavior was observed in
experiment. Another way to obtain clean pulses is to ta
the shape of the input signal pulse. Section III shows how
produce pulse profiles by designing the trigger to delay
appearance of the smaller TWI solitons. This technique
produce compressed pulses with very clean sech profi
Curve (t2) in Fig. 5 is the trigger giving the signal outpu
(s2) in Fig. 6: the smaller soliton is strongly delayed, a
both the signal and idler output are clean.

Tables I and II show that the intensity of the largest so
ton is approximately twice the pump intensity when there
more than three pump TWI solitons, and the duration of
largest soliton decreases rapidly as the pump energy
creases. The primary drawback of compressing by isola
the largest soliton is that only the energy of the largest s
ton is used~the pump energy in the smaller solitons is d
carded!, and the efficiency drops for high compression
However, as the tables show, even for high compressions
largest soliton contains a significant portion of the init
pump energy. For example, ninefold compression can
achieved with an energy efficiency of 36%, and 20-fold co
pression with 20% efficiency.~Efficiency is defined as the
fraction of the initial pump energy in the largest TWI so
ton.! Note: 100% efficiency means that all the pump ene
is transformed into the signal and idler. This energy is pa
tioned between the generated waves according to their
quencies and normalizations~2! and ~3! and ~14! and ~15!.

The experimental compression of the fastest wave
served in Refs.@6,7# was analogous in behavior to isolatin
of the largest TWI soliton. We compared the theory and
experiment at two different frequencies and phase match
angles. The parameters for the two cases are summariz
Table III. All the data are taken from Ref.@26#, which gives
d
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the appropriate nonlinear coefficient for BBO as 2.3 pm
Estimating the pump energy shows that in the correspond
FSF case each pump pulse could contain 10–15 TWI s
tons. Tables I and II predict that the largest pump solit
should be 20–30 times shorter than the pump. There are
factors that need to be accounted for: the first is the norm
izations ~14! and ~15! describing the transfer of the pum
TWI soliton to another envelope; the second is the amp
cation and compression which results from the proximity
TWI solitons in the train when the phases are alternating.
the experimental frequencies in BBO, these factors ac
opposite directions, and approximately cancel. The the
predicts a compression of;20 for a pump intensity of;800
MW/cm2, exactly what is observed in the experiment. T
theory predicts higher compression for higher intensiti
however, in the experiment the compression coefficient
bilized after the pump intensity reached 800 MW/cm2. We
believe this to be due to spatial pulse modulation, which
neglected in the theory.

In the experiments the nonlinear medium was roughly
length required for the first TWI soliton to form. For low
intensity pumps@Fig. 10~B!# the profile is clean without sat
ellites because only the most intense TWI soliton has
peared: the compression is roughly a factor of 12. As
pump intensity increases the temporal output profile dev
ops additional maxima@compare Fig. 10~A! with Figs. 2 or
9# because the nonlinear medium is now sufficiently long
the less intense solitons to form and spoil the clean pro
Theory predicts that the duration of the dominant pump s
ton should be inversely proportional to the square root of
pump intensity. The 0.7-mJ pulse@Fig. 10~B!# has a duration
of t'850 fs. Computing the proportionality constant usi
this value gives a prediction that the 1.8 mJ pulse@Fig.
10~A!# should have a duration of 530 fs, in good agreem

FIG. 10. Experimental results.
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with the experimental value of'600 fs. Figure 11 compare
the theoretical compression predictions with the experim
tally measured values: for pump intensities,600 MW/cm2

the theory provides a good fit with the experimental valu
We believe the small discrepancy between theory and exp
ment for the last point on the graph is due to the spa
modulation of the waves.

V. CONCLUSIONS

The TWI-soliton theory gives a clear picture of som
complicated features of parametric amplification. The abi
to predict and control the form of the output pulses may h
important practical applications in pulse compression, pu
shaping, and optical computing. Although the IST theory h
existed since 1974, it is only recently that pulses sufficien
short and intense to test and use it have become techno
cally feasible. There is currently a growing body of expe
mental results that we believe can be described by
theory. In this paper we compared the experimentally
served 20-fold signal pulse compression in a synchrono
pumped OPO with TWI theory. The experimental data is i
good agreement with TWI-soliton theory.

Although, the mathematical basis of TWI-soliton theory
already well developed, there are numerous questions w
require more detailed investigation. In this paper, we con
ered the simplest FSF interaction in which all three intera
ing waves can have TWI solitons. For practical purposes
very important to improve our understanding of the SFF
teraction: because of normal dispersion the high-freque
pump is usually slower than the signal and idler. The S
case is also very useful in the new periodically poled non
ear media, because it allows the use of the larged3,3 coeffi-
cient.

It is also important to develop the theory for initially ove
lapping pulses. This requires development of the Zakhar
Manakov scattering problem, which has thus far not attrac
the attention of the research community. Further devel
ment of the ZM problem would allow us to consider ove
lapping initial pulse profiles: in practice the limited length
nonlinear media ensures that input pulses overlap. This o
lap can considerably alter the interaction. For example, p
liminary investigation shows that for the ZM interactio
TWI solitons can appear in the pump wave even for the S
case. This may provide an explanation for the numerica

FIG. 11. Comparison of experiment and theory.
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observed analogy between the FSF and SFF cases fo
signal wave.

TWI-soliton theory explains the observed soliton featu
of the compression of the fastest wave. The inability to co
press the intermediate speed pulse can be explained by
absence of TWI solitons in the corresponding envelope. G
erally this nonsoliton wave has a very smooth distributio
with a duration approximately equal to the pump duratio
Compression of the intermediate wave is not forbidden
TWI-soliton theory. In particular, it can appear as a bypro
uct of the compression of the fastest wave when the idler
signal speeds are close together, the behaviors of the
pulses are very similar, and it is possible to compress b
pulses. In fact, compression of this sort was observed i
periodically poled lithium-niobate@27# experiment.

Although, the theory in the present paper describes o
perfectly matched interaction, the generalization to nonz
phase mismatch is straightforward. The simple phase tra
formation in Ref.@11# show how phase mismatch is relate
to the real part of the eigenvalueslk . The effects ofDk
Þ0 will be considered in further publications.
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APPENDIX A: DERIVATION OF EXPRESSIONS
FOR PHASES

Analysis of the TWI equations on the basis of IST theo
@17# shows that, when the envelopes of all three waves
separated, and on compact support, each of the waves c
sponds to a certain scattering matrix:

S15S 1
0
0

0
ā1

b1

0

2b̄1

a1

D , S25S ā2

b2

0

2b̄2

a2

0

0
0
1
D ,

S35S 1
0
0

0
ā1

b1

0

2b̄1

a1

D , ~A1!

where l j are complex variables,aj5aj (l j ), bj5bj (l j ),
ā j5ā j (l j ), andb̄ j5b̄ j (l j ) are analytic functions on the en
tire plane of the corresponding complex variablesl j , and
ā j (l j )5@aj (l j* )#* and b̄ j (l j )5@bj (l j* )#* . Each of the
three matrixes~A1! is called a Zakharov-Shabat matrix fo
the corresponding wave. Solitons in each envelope co
spond to the zeros of the coefficientaj (l j ) of the corre-
sponding ZS matrix. In this paper, we will assume that
functionsaj (l j ) have zeros only at the points wherel j is
pure imaginary:l j5 ih j , whereh j is the imaginary part of
l j . This situation corresponds to the case of perfect ph
matching,Dk50. Generalization to the caseDkÞ0 can be
done using the phase transformation from Ref.@11#. Here we
do not do this for the sake of simplicity. Parametersh j are
connected by the relationships
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h15
n3,2

n2,1
h35a1h3 , ~A2!

h25
n3,1

n2,1
h35a2h3 . ~A3!

Each of the functionsaj (h j ) are assumed to have a fini
number of zeros,h j ,k . The value of h j ,k for which
aj (h j ,k)50 gives the amplitude of thekth soliton in thej th
envelope. As described above, solitons can move from
pump to the signal and idler and back. When solitons cha
envelopes, their amplitudes must be normalized. If before
interaction the pump hadn TWI solitons with amplitudes
h3,k , then after the interaction the signal and the idler wa
will receive these solitons with their amplitudes dictated
the relationships

h1,k5
n3,2

n2,1
h3,k5a1h3,k , ~A4!

h2,k5
n3,1

n2,1
h3,k5a2h3,k . ~A5!

This means that ifa3(h) in the beginning of the interaction
has zeros at the pointsh3,k , after the interaction, the ele
mentsa1(h) anda2(h) will have zeros at the pointsh1,k and
h2,k connected with the pump solitons with the normaliz
tions ~A4! and ~A5!.

To find the final soliton phases, we need to obtain expr
sions of the ratiosbj /aj for each wave at the end of th
interaction. Such ratios in IST theory are called reflect
coefficients. At each point whereaj becomes zero,bj /aj has
a pole. Soliton phasesD j ,k can be obtained by taking res
dues of the reflection coefficients at those points wh
aj (h j ,k)50. Such poles correspond to TWI solitons.~Here
index j corresponds to the number of the envelope, and in
k corresponds to the soliton number.! The overall scattering
matrix S for the TWI problem is the product of the thre
matrixes corresponding to each of the interacting waves.
the beginning of the interaction (z→2`,t→2`) the sec-
ond wave was in the front of the third and the first wa
followed the third, then

S~ i !5S2
~ i !S3

~ i !S1
~ i ! , ~A6!

where the indexi stands for ‘‘initial.’’ ~Notice that our no-
tations are different from that in Ref.@17#.! Due to the dif-
ferences between the speeds, the waves reorder after th
teraction:

S~ f !5S1
~ f !S3

~ f !S2
~ f ! , ~A7!

where an indexf stands for ‘‘final.’’ The order of the final
scattering matricesS( f ) reflects the reordering of the pulse
The evolution of the elementsan,m of the scattering matrixS
is given by the expression@17#

an,m~l,z!5an,m~l,0!expF2 ilzS vm2vn

v1v2v3
D G , ~A8!
e
e
e

s

-

s-

n

e

x

in

in-

wherev i are the group speeds of the waves. Notice ag
that in the present paper, the time and space coordinate
interchanged as compared with the work@17#. Expression
~A8! enables us to relate the elements of the scattering ma
before and after the interaction. If in the beginning of t
interaction, the wave with the smallest velocityv2 was ab-
sent~the fastest wave withv1 is the signal wave!, then the
corresponding ZS matrix for this wave is the identity matr
ā2

( i )5a2
( i )51 and b̄2

( i )5b2
( i )50. EquatingS( i ) and S( f ) for

this case, we obtain the expression for the reflection coe
cient r2(l) for the idler wave:

b̄2
~ f !

ā2
~ f ! 5

b̄3
~ i !b1

~ i !

ā3
~ f !ā2

~ f ! expF2
h2

v2
zG

or

r25
b2

~ f !

a2
~ f ! 5

b3
~ i !

a3
~ i ! b̄1

~ i ! expF2
h2

v2
zG . ~A9!

Here we used the relationshipā2
( f )ā3

( f )5ā2
( i )ā3

( i ) .
To obtain the final phases of the idler wave, one has

find the residues of the reflection coefficient~A9! at the
points h2,k connected with the initial pump soliton ampl
tudesh3,k by relationships~A5!:

D2,k
~ f !5

2 ib3
~ i !~h3!

d

dh2
a3

~ i !~h3!uh25h2,k

b̄1
~ i ! expF2

h2

v2
zG

5a2D3,k
~ i ! b̄1

~ i ! expF2
h2

v2
zG ; ~A10!

when taking derivatives, we again used expression~A5!.
The analogous expression for the reflection coefficien

the signal wave with the largest velocityv1 cannot be ob-
tained from Eqs.~A1!–~A7! directly. To find the reflection
coefficients for this case, we use the fact that ifAj (t,z) are
solutions of system~1!, then the functions2Aj (2t,2z) are
also solutions of the same system. The final result of
direct problem will serve as initial conditions for the proble
inverted in time and space, and vice versa. Therefore we
consider a process where, at the end of the interactio
small signal waveA1(t) with a speedv1 is in the front of a
large pump waveA3(t) with no idler wave. The initial con-
ditions for this reversed process will be a signal wave w
the amplitudeA1(2t) chasing a large pump with the ampl
tudeA3(2t) with no idler wave. The final coefficientsa and
b for such an inverted process will be equal to the init
values of the direct process, and vice versa. Using this f
we obtain

b1
~ f !

a1
~ f ! 5

b1
~ i !

a1
~ i !a3

~ i ! expF2
h1,k

v1
zG . ~A11!

The final soliton phases can be obtained by taking resid
of the functions~A9! and ~A11! at the points where coeffi
cientsa andā of the corresponding ZS matrices are equal
zero:
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D1,k
~ f !5

b1
~ i !~h1!

a1
~ i !

d

dh1
@a3

~ i !~h3!#uh15h1,k

expF22
h1,k

v1
zG .

~A12!

Notice that the differentiation here is done with respect to
variableh1 , but that the coefficienta3(h3) is a function of
h3 . The connection betweenh1 andh3 is given by relations
~A4! and ~A5!. Expression~4! shows that an intense pum
wave consist almost entirely of TWI solitons. In the follow
u

l
o

a
ob
ll
tt

m

e

ing analysis, we will assume that the pump before the in
action consisted only of TWI solitons and had no radiatio
In this case the coefficientsa3(h) can be written as

a3~h3!5)
k51

n
h32h3,k

h31h3,k
, ~A13!

whereh3,k is as usual the amplitude of thekth soliton in the
pump. Differentiating Eq.~A13! with respect toh1 and using
relationship~A2! we obtain
d

dh1
F)

j 51

n
h32h3,j

h31h3,j
GU

h15h1,k

5
1

a1

d

dh3
F )

k51

n
h32h3,j

h31h3,j
GU

h35h3,k

5
1

2a1h3,k
)
j 51
j Þk

n
h3,k2h3,j

h3,k1h3,j
. ~A14!
.
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are

he

em
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e
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Notice that the derivative of the product in Eq.~A14! has
only one nonzero term at the pointsh35h3,k . After a sub-
stitution of Eq.~A14! into expression~A12!, we obtain the
expression for the final phases of the signal wave:

D1,k
~ f !5S b1

~ i !

a1
~ i !D 2a1h3,k)

j 51
j Þk

n
h3,k1h3,j

h3,k2h3,j
expF2

h1,k

v1
zG .

~A15!

One should be careful when using expression~A15!. Be-
cause this formula was obtained by reversing time, the o
put shape of the signal wave determined by Eq.~A15! will
also be reversed in time.

APPENDIX B: ZAKHAROV-SHABAT PROBLEM
AND REFLECTION COEFFICIENTS

Expressions~A10! and~A15! connect the initial and fina
scattering data for the parametric amplification process. B
expressions contain parametersa and b from Zakharov-
Shabat scattering matrixes~A1!. In this appendix we show
the connection between these coefficients and the initial d

The connection is based on the direct ZM scattering pr
lem @17# scattering problem. When the pulses are physica
separated, as they are before the interaction, the ZM sca
ing problem reduces to a set of three~one for each pulse! ZS
scattering problems

ui81 ilui5qi~ t !v i ,
~B1!

v i82 ilv i52qi* ~ t !ui ,

with potentialqi(t) given by

qi~ t !5
1

g i
Ai ,0* ~ t !. ~B2!

The functionsu andv are the eigenfunctions and the para
etersl the eigenvalues of the ZS problem~B1!.

If potential ~B2! decreases sufficiently rapidly ast→
6` that
t-

th

ta.
-

y
er-

-

E
2`

`

uqi~ t !uekutudt,` ~B3!

for any positive numberk, then all solutions of system~B1!
are asymptotic ast→6` to simple exponential functions
~Clearly, this assumption imposes no physical restrictions
the pulses that can be considered since all optical pulses
bounded in both time and space.! Moreover, any solution of
Eq. ~B1! can be written either as a linear combination of t
two solutionsf and f̄ system~B1! satisfying

f→F10Ge2 ilt, f̄→F 0
21Geilt when t→2`, ~B4!

or as linear combinations of the two solutionsc and c̄ sat-
isfying

c→F01Geilt, c̄→F10Ge2 ilt when t→1`, ~B5!

where we have omitted the indexi for clarity. Either pair of
functions forms a complete set of solutions of the syst
~B1!. So the first pair of solutions~B4! are a linear combi-
nation of the the second pair~B5!, i.e.,

f5ac̄1bc→S a
b

e2 ilt

eilt D as t→1`,

f̄5bc2āc→S b̄
2ā

e2 ilt

eilt D as t→1`. ~B6!

The coefficientsa, b, ā, andb̄ ~which depend upon the spec
tral parameterl! relating the two sets of solutions form th
Zakharov-Shabat scattering matrix

SZS5S a~l!,
b~l!,

2b̄~l!

ā~l!
D . ~B7!

In Ref. @23# it was shown that for potentials satisfying~B3!
a(l) and ā(l) are analytic in the upper-half and lower-ha
complex planes, respectively. Formulas~5!–~7! show how to
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recreate the shape of the pulse with known soliton con
~and negligible radiation!. System~B1! shows how to com-
pute the soliton spectrum and radiation content of the ini
pulsesAi ,0(t)5g iqi(t). The radiation spectrum inqi(t) is
determined by the definition~B6! of the scattering matrix
and the solutions of system~B1! and boundary conditions
~B4! and ~B5!.

To complete our analysis we derive simple approxim
tions, in terms of the initial pulse profiles, for the values
b̄1 andb1

( i )/a1
( i ) occurring in~A10! and~A15!. To do this we

need the ZS scattering matrix~B7! for the small potential
q(t)5A1,0(t)/g1 corresponding to the small initial signa
pulse at the purely complex valuesl5 ih1,k5 iah3,k corre-
sponding to the solitons in the intense initial pump. As b
fore, we restrict attention to potentialsq(t)5q* (t), i.e.,
without a phase modulation. Since the potentialq(t) is very
small we employ a perturbation expansion. Assuming
potentialq is of ordere and substituting the expansions

u~ t !5u01eu1~ t !1e2u2~ t !1¯ ,

v~ t !5v01ev1~ t !1e2v2~ t !1¯ ,

andl5 ih into system~B1!, and equating coefficients give
the zeroth-order equations

u082hu050,

v081hv050,

with solutions ~B8!

u05eht,

v05e2ht.

Note that in Eq.~B8! and what follows the subscript refers
the order of the approximation. Substituting into Eq.~B1!
gives the first-order system

u182hu15q1~ t !e2ht,
~B9!

v181hv152q1~ t !eht.

For the boundary conditions~B4!, from Eq. ~B9! we obtain

u~ t !'ehtF E
2`

t

q~ t !e22htdt11G ,
~B10!

v~ t !'2e2htE
2`

t

q~ t !e2htdt,

which with Eq.~B6! immediately gives

a~hk!'11E
2`

`

q~ t !e22hktdt'1,

~B11!

b~hk!'2E
2`

`

q~ t !e2hktdt.

Computingā andb̄ is similar. Solving Eq.~B9! for the initial
conditions~B4! gives
nt

l

-
f

-

e

u~ t !'ehtE
2`

t

q~ t !e22htdt,

~B12!

v~ t !'2e2htF E
2`

t

q~ t !e2htdt11G .
Substituting into Eqs.~B6! and ~B12! gives ā and b̄ as

ā~hk!'11E
2`

`

q~ t !e2hktdt'1

~B13!

b̄~hk!'E
2`

`

q~ t !e22hktdt.

Expressions~A10!, ~A15!, ~B11!, and ~B13! give formula
~18!. Before using~B1! the functionq(t) must be reversed in
time and the coordinatet must be changed to2t.

APPENDIX C: NUMERICAL QUANTIFICATION
OF EFFECT OF PREDELAY

Numerous numerical simulations were run in order
validate the use of the simpler ZS analysis for the FSF pr
lem. The issue here is when can pulses be considered
seperated. Figure 12 summarizes the signal output fro
sequence of numerical simulations of the decay of an inte
four soliton @4 sech(t)# pump pulse triggered by a sma
@0.1 sech„3(t1Dt)…# trigger pulse for a range of values—i
units of the FWHMI of the pump—of the predelayDt. For
predelays ranging from 0.125–3 FWHMI of the pump t
signal output had the characteristic alternating soliton pro
illustrated in Fig. 3: in Fig. 12, ‘‘Primary Peak’’ indicates th
amplitude of the largest soliton, while ‘‘Secondary Pea
indicates the amplitude of the next largest soliton. The
sults indicate that for small trigger pulses and predel
greater than 0.125 FWHMI~of the intense pump! the ZS
analysis gives less than a 15% error in the amplitude of
leading soliton.
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